首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
燃料电池是一种可将化学能通过电催化反应直接转化成电能的装置,具有能量密度高和清洁无污染等优点.燃料电池阴极氧还原反应(ORR)的动力学较迟缓,是电池能量效率损失的主要原因.目前ORR催化活性最高的是铂基催化剂,但由于贵金属铂价格昂贵,储量稀少,且对燃料小分子渗透的抗性较差,严重制约了燃料电池的大规模应用.因此,高性能、低成本的非贵金属催化剂成为燃料电池领域的研究热点.本文选用含氮量高达45%的三聚氰胺-甲醛树脂为碳源和氮源,Fe(SCN)3为铁源和硫源,以CaCl2为模板,在高温和铁的催化作用下将树脂碳化,经酸洗和二次热处理工艺,制备出铁、氮、硫共掺杂的多孔碳(FeNS-PC).干燥后的CaCl2颗粒可防止树脂在高温下交联形成块状碳颗粒,同时起到造孔模板的作用.CaCl2颗粒在温和条件下即可除去,无需强腐蚀性条件,因此不会对催化活性中心造成破坏.在Fe/N/C催化剂中掺杂S可进一步提高催化活性,不添加碳载体可避免低活性的碳载体降低质量活性,多孔结构可促进传质,充分利用活性位点.我们优化了热处理温度,并对催化剂的结构、组分及催化性能等进行了表征分析.结果表明,热处理温度为900℃时,可将树脂完全转化成多孔碳,并获得较高的杂原子掺杂量,可达到最优活性.CaCl2为模板剂可避免使用强腐蚀性试剂去除模板,有利于保留活性位,并得到多孔结构.FeNS-PC-900的比表面积可达775 m2/g.得益于原位掺杂的合成工艺,各掺杂元素在多孔碳表面均匀分布.在酸性介质中,FeNS-PC-900的半波电位可达到0.811V,仅比商业Pt/C催化剂低78 mV;在0.8V电位下的质量活性为10.2 A/g,表现出优异的催化活性.经过10000圈加速衰减测试后,其半波电位仅下降了20 mV,在0.75V电位下持续放电10000s后,其ORR电流仍保持初始电流的84.4%,具有比Pt/C更加优异的稳定性.以FeNS-PC-900为阴极催化剂的质子交换膜燃料电池的最大功率密度可达到0.49 W/cm2,并在0.6V电压下持续放电10h后,其电流仍可保持初始电流的65%,表现出良好的应用潜力.FeNS-PC-900具有高掺杂含量、高比表面积和多孔结构,并且杂原子在催化剂表面均匀分散,在半电池和燃料电池测试中都表现出优异的催化活性和稳定性,表明其是一种非常有潜力应用于燃料电池的非贵金属氧还原催化剂.  相似文献   

2.
氧还原反应(ORR)是金属空气电池以及质子交换膜燃料电池(PEMFCs)系统重要的阴极反应,研究具有高活性与高稳定性的非贵金属催化剂具有重要意义。本研究使用了一种具有分级孔结构的MIL-101-(Al-Fe)作为金属前驱体模板,成功制备出具有分级多孔结构的Fe-N-C催化剂。电化学测试结果表明,在0.1 mol/L KOH电解液中,Fe-N-C-MIL-900催化剂表现出最优的氧还原性能(半波电位0.905 V以及5000圈CV测试后半波电位仅下降5 mV),远高于纯碳基N-C-MIL-900催化剂(0.845 V)。通过旋转环盘电极测试发现,Fe-N-C-MIL-900催化剂ORR电子转移数为3.98,H2O2产率低于3%,表现出明显的4电子ORR路径。这一工作为制备具有高ORR活性的Fe-N-C催化剂提供了一种新的途径。  相似文献   

3.
高稳定性、高性能、低成本的氧还原反应(ORR)非贵金属催化剂对碱性燃料电池的发展具有重大意义。本研究利用杂原子(N,S)掺杂多孔碳材料和ZIF-67中非贵金属的协同作用制备出性能优良的非贵金属催化剂Co-N/S@CET。物理表征得出炭化后的催化剂表面具有介孔结构,且Co和N进行了大量配位,并且通过XPS测试揭示了催化剂中具有大量Co-Nx活性位点。电化学测试结果表明,Co-N/S@CET具有良好的ORR活性和稳定性,极限电流密度达5.0mA/cm2,半波电位达0.85V,且具有优异的稳定性(10000s后仅衰减4%)。  相似文献   

4.
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co3O4/聚吡咯/氧化石墨烯(Co3O4/Ppy/GO).其形貌为Co3O4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co3O4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800℃高温煅烧处理后,Co3O4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co3O4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co3O4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co3O4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.  相似文献   

5.
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co_3O_4/聚吡咯/氧化石墨烯(Co_3O_4/Ppy/GO).其形貌为Co_3O_4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co_3O_4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800°C高温煅烧处理后,Co_3O_4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co_3O_4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co_3O_4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co_3O_4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.  相似文献   

6.
近年来,高能量密度、清洁环保的燃料电池发展迅速,作为汽车动力电源、穿戴电源展现出重要的潜力。然而,由于燃料电池在放电时,阴极发生的氧还原反应(ORR)存在很高的过电位和缓慢的动力学过程,亟需高性能廉价的电催化剂以提高电池效率。本文以处理后的油菜花粉为前驱体,通过水热、硫化、退火工艺制备了一种N掺杂多孔碳负载Co_4S_3纳米颗粒复合材料(Co_4S_3/PC)。Co_4S_3/PC表现出优异的ORR催化性能:其催化起始电位为0.96 V,半波电位为0.80 V,极限电流为5.03 mA·cm~(-2),接近商业Pt/C催化剂的催化活性。同时Co_4S_3/PC还具备持久的催化稳定性:循环5000次后,催化ORR反应极限电流仍保持95.8%。这种源于生物质的复合材料为制备燃料电池阴极催化剂提供了一种低成本方案。  相似文献   

7.
随着人们环保意识的不断增强,社会对清洁能源的需求也日益增加.燃料电池具有效率高,燃料来源丰富,可直接将化学能转化成电能且污染小等优点,因而受到了广泛关注.然而,燃料电池的阴极氧还原反应(ORR)速率较慢,成为提高燃料电池整体效率的制约因素.因此,开发高性能的ORR催化剂,加快ORR反应速率具有非常重要的意义.目前,Pt基催化剂被认为是活性最好的商用ORR电催化剂.尽管此类催化剂具有较高的催化活性和良好的稳定性,但Pt的储量有限,价格高昂,抗燃料毒化性能差,限制了其大规模应用.近年来,为了减小Pt的用量,降低催化剂成本,人们除了致力于研究贵金属合金催化剂及非贵金属催化剂外,还把目光聚焦在了非金属催化剂,特别是碳及其复合材料的研究上.在众多碳材料中,碳球因具有良好的表面渗透性和较高的机械稳定性而被广泛应用于催化、吸附、药物输送和能量存储及转化等领域中.然而,碳球的表面化学惰性较强,比表面积较低,使其部分应用受到了限制.因此,人们采用了多种方法来调控碳球的物理化学性质.其中,向碳材料中掺入杂原子,尤其是氮原子的方法广受青睐.因为杂原子的掺入会显著增强作为主体的碳原子给电子的能力和表面吸附性质,从而对ORR表现出优异的催化活性和稳定性.本文以蔗糖作为碳源,三聚氰胺作为氮源,采用水热法及高温热解法制备了一系列氮掺杂的生物质碳球.并对氮掺杂量及热解温度进行了优化.结果表明,石墨化程度及石墨氮含量的提高,能有效地提高催化剂的活性.在优化了的条件下得到的催化剂N0.1C1.9S-900,表现出了比商业Pt/C催化剂更好的ORR催化性能.在0.1 mol/L KOH中,该催化剂催化ORR的起始电位和半波电位分别为–22.6和–133.6 mV(vs.Ag/AgCl),极限电流密度为4.6 mA/cm~2,分别比商业Pt/C高出7.2 mV,5.9 mV和0.2 mA/cm~2.同时,在经过30000 s的稳定性测试中,N0.1C1.9S-900催化剂的电流损失也远低于Pt/C,表明该催化剂具有良好的稳定性.此外,在抗甲醇毒化实验中,相比于商业Pt/C,N0.1C1.9S-900催化剂对甲醇有更好的耐受性.另外,该催化剂催化的ORR属于高效的4e~–途径.可见,该催化剂作为燃料电池的阴极氧还原反应催化剂具有广阔的前景.  相似文献   

8.
燃料电池具有能量转化效率高、功率密度高、低温操作、无污染等优点,因而在电动汽车动力源、移动式电源及分散电站等领域具有广阔的应用前景.Pt/C催化剂是目前使用最广泛的燃料电池阴极氧还原反应(ORR)的催化剂,然而其有限的储量、较低的稳定性、易CO中毒等缺点限制了燃料电池的大规模商业化,因此研制高活性和稳定性的非贵金属催化剂以代替Pt/C催化剂显得至关重要.金属有机骨架(MOFs)是由金属阳离子和有机配体配位而成的结构可调的空间三维材料,其作为前驱体制备非贵金属ORR催化剂具有独特的优势:(1)MOFs的三维晶体结构可以提供高的活性位点密度;(2)有机配体可以在热解的过程中转化为碳支撑体,使得活性金属物质和碳支撑体可以同时生成;(3)可以调节形成MOFs的金属离子和有机配体来设计一定特性的MOFs结构,从而制备结构和功能可调的催化剂;(4)MOFs具有可调控的孔径尺寸及可修饰的孔道表面,其较大的比表面积和不同孔隙分布有利于吸附反应物氧气分子,而且可以得到不同元素和金属掺杂的多孔碳材料.因此,本文选择MOF材料ZIF-67作为前驱体,通过在500–900°C高温热处理制备了非贵金属ORR催化剂,在0.1 mol/L KOH溶液中进行电化学测试,发现其中600°C热处理得到的催化剂的活性较好.为了进一步提高催化剂的导电性和分散性,对该催化剂进行了BP 2000碳载处理.电化学测试发现,该催化剂的ORR活性进一步提高:当载量为1.0 mg/cm2时,其ORR起始电位和半波电位分别达1.017和0.857 V(vs.RHE),与商业化Pt/C(20μgPt/cm~2)的性能相近.透射电镜结果表明,制备的催化剂为单质Co粒子镶嵌的N掺杂的多孔碳材料,其中Co粒子的粒径为10 nm左右,其存在可由X射线衍射测试得以确认.X射线光电子能谱表征显示,碳载得到的催化剂中N原子主要以吡啶型存在,后者可能起到一定的ORR活性位点作用,且其比表面积为296 m~2/g,高于未碳载的268 m~2/g,也有利于提高其电化学活性.结果还显示,与商业化Pt/C相比,碳载催化剂具有更好的抗甲醇性和稳定性.  相似文献   

9.
氮掺杂碳载非贵金属氧还原反应(ORR)催化剂已被广泛研究,以解决燃料电池Pt基催化剂的高成本问题.通过溶剂热法制备了无定形Zn基金属有机框架,并进一步经热处理得到Zn/N共掺杂碳催化剂.测试表明ZnN/C-900催化剂(热处理温度为900C)具有形貌均一的球形特征且比表面积高达961 m2·g-1,N、Zn的原子含量分...  相似文献   

10.
作为一种新型能源技术,燃料电池具有能源转化效率高、燃料可再生、运行安全清洁等优点,因而在应对全球持续增长的能源、环境问题方面受到广泛的研究.但是,燃料电池的阴极氧还原反应(ORR)存在动力学缓慢的固有特性,其反应过电位高,需要在催化剂的辅助下才能顺利发生反应并提供足够的电极电势.目前ORR催化性能最优的是铂基催化剂,但其存在着资源稀缺、价格昂贵、循环寿命差等缺陷,这也是制约燃料电池商业化应用的主要因素.因而要想实现燃料电池的大规模应用,寻找新的可替代铂基催化剂、且储量丰富、价格低廉的优秀ORR催化剂成为了研究的热点.近几年来,杂原子掺杂的碳材料以其价格低、催化性能卓越、优异的稳定性和抗甲醇性能等优点,逐渐发展成为最有前景的ORR催化剂.本文以FeCl3为模板和铁源,质子盐对苯二胺(PPS)为碳、氮、硫源,采用简单的一步中和法制备氮、硫、铁三掺杂的二维介孔碳纳米片催化剂(NSFC).TEM和BET结果显示,FeCl3不仅起到了二维模板的作用,同时在热处理过程中与无定形碳发生作用形成了丰富的介孔,大大提高了材料的比表面积和结构开放性,为ORR反应提供了反应场所.XPS结果显示,质子盐中和合成法不仅有效地简化了NSFC的合成步骤,而且能够灵活地控制材料的元素组成,实现了氮和硫的原位掺杂,有效构筑了杂原子掺杂活性位;同时FeCl3也为催化剂材料引入了Fe元素,进而形成催化活性更加优异的Fe-Nx活性位.电化学测试结果表明,通过调整FeCl3和PPS的比例,NSFC-3催化剂材料在结构形貌和表面功能达到了同时最优化,获得了与商业30 wt%Pt/C可比的催化性能,其起始电位和极限电流密度分别达到了–0.03 V和5.05 mA/cm2,同时NSFC-3具有优于商业30 wt%Pt/C的催化选择性、稳定性和抗甲醇性能.这源于稳定的二维纳米片层结构、丰富的表面介孔结构、大的比表面积和活性位点暴露率以及多种催化活性位点的协同催化效应.  相似文献   

11.
作为一种新型能源技术,燃料电池具有能源转化效率高、燃料可再生、运行安全清洁等优点,因而在应对全球持续增长的能源、环境问题方面受到广泛的研究.但是,燃料电池的阴极氧还原反应(ORR)存在动力学缓慢的固有特性,其反应过电位高,需要在催化剂的辅助下才能顺利发生反应并提供足够的电极电势.目前ORR催化性能最优的是铂基催化剂,但其存在着资源稀缺、价格昂贵、循环寿命差等缺陷,这也是制约燃料电池商业化应用的主要因素.因而要想实现燃料电池的大规模应用,寻找新的可替代铂基催化剂、且储量丰富、价格低廉的优秀ORR催化剂成为了研究的热点.近几年来,杂原子掺杂的碳材料以其价格低、催化性能卓越、优异的稳定性和抗甲醇性能等优点,逐渐发展成为最有前景的ORR催化剂.本文以FeCl_3为模板和铁源,质子盐对苯二胺(PPS)为碳、氮、硫源,采用简单的一步中和法制备氮、硫、铁三掺杂的二维介孔碳纳米片催化剂(NSFC).TEM和BET结果显示,Fe Cl3不仅起到了二维模板的作用,同时在热处理过程中与无定形碳发生作用形成了丰富的介孔,大大提高了材料的比表面积和结构开放性,为ORR反应提供了反应场所.XPS结果显示,质子盐中和合成法不仅有效地简化了NSFC的合成步骤,而且能够灵活地控制材料的元素组成,实现了氮和硫的原位掺杂,有效构筑了杂原子掺杂活性位;同时FeCl_3也为催化剂材料引入了Fe元素,进而形成催化活性更加优异的Fe-Nx活性位.电化学测试结果表明,通过调整FeC l3和PPS的比例,NSFC-3催化剂材料在结构形貌和表面功能达到了同时最优化,获得了与商业30 wt%Pt/C可比的催化性能,其起始电位和极限电流密度分别达到了–0.03 V和5.05 mA/cm2,同时NSFC-3具有优于商业30wt%Pt/C的催化选择性、稳定性和抗甲醇性能.这源于稳定的二维纳米片层结构、丰富的表面介孔结构、大的比表面积和活性位点暴露率以及多种催化活性位点的协同催化效应.  相似文献   

12.
能源和环境问题是制约人类延续和发展的首要问题,高效便宜的能源存储和转换装置吸引着广泛注意。基于便携式,功率密度高,无污染等,可充放电锌-空气电池(ZAB)被大量研究。然而,阴极的氧还原(ORR)和氧析出反应(OER)缓慢的动力学限制了ZAB的实际应用。开发电催化高效,便宜,高稳定性的双功能电催化剂至关重要,而其中将过渡金属和碳基材料复合是明智的决定。磷化钴(Co_2P)化合物已经广泛研究用作高效的OER催化剂,但是对于催化剂的ORR活性很少研究。在此,本论文通过简单热处理钴盐和植酸掺杂的k-卡拉胶复合物制备出磷化钴封装在磷掺杂的多孔碳(Co_2P-PCA-800)纳米催化剂。该催化剂具有3D分级多孔结构,表现出具有与商用Pt/C相当的半波电位(E_(1/2)) 0.84 V,从而满足了可充放电锌-空电池需求。同时,我们还制备了磷掺杂的多孔碳(PCA)和钴掺杂的多空碳(Co-CA),对比了结构形貌对性能的影响。结果表明,具有完整的多孔结构,在每个位点的阻抗更一致,从而会有更多的有效活性位点。高效的ORR和OER活性主要归功于3D蜂窝分层多孔结构和正电荷磷化钴(Co_2P)纳米颗粒的协同作用。此外,蜂窝状3D孔结构不仅利于传质和加快电子传输也保护了磷化钴,让其更稳定。最后,我们组装了可充放电锌-空气电池用Co_2P-PCA-800作空气阴极催化剂。相比贵金属,该催化剂组装的ZAB具有接近的充放电性能和能量密度以及更高的比容量和更好的稳定性。这项工作也为解决能源和环境问题提供了新思路。  相似文献   

13.
吕雅茹  翟雪静  王珊  徐虹  王锐  臧双全 《催化学报》2021,42(3):490-500,中插53-中插60
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 M KOH电解液中,3DOM Fe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时,3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.  相似文献   

14.
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 MKOH电解液中, 3DOMFe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时, 3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.  相似文献   

15.
开发用于氧还原反应(ORR)的低成本和高性能的非贵金属催化剂(NPMC)对于燃料电池的商业化至关重要。在这里,我们介绍了一种简单合成的由Fe3C纳米粒子包裹在介孔N掺杂碳(Fe-NC)中的NPMC材料,包括MIL-100(Fe)与葡萄糖和尿素的物理混合,以及随后在惰性气体下的热解。由此获得的Fe-N-C-900 (在900°C下制备的材料)表现出优异的电催化活性,高耐久性和对ORR卓越的甲醇耐受性,其催化性能与商业Pt/C在碱性介质中的催化性能相当。Fe-N-C-900在ORR中表现出优异的催化活性和稳定性,这是由于其较大的BET比表面积,较大的孔体积,氮掺杂剂,活性Fe3C纳米粒子以及其中活性官能团之间的协同效应。  相似文献   

16.
开发低成本、高性能的氧还原反应(ORR)催化剂是当前的研究热点.虽然酞菁铁(FePc)在几十年前就被证明能高效地电催化氧还原反应,但由于其电子传导性和稳定性较差,无法取代商用的Pt/C催化剂.氮掺杂碳材料不仅化学性质稳定、电子传导性好,还有一定的氧还原催化活性.本文首先制备了聚苯乙烯@聚多巴胺球前驱体,经过高温碳化后制得了氮掺杂中空碳球,进而负载酞菁铁后制备了负载酞菁铁的氮掺杂中空碳球复合材料(FePc-NHCS).通过调整煅烧温度和酞菁铁的负载量,可进一步调控FePc-NHCS的多孔结构、石墨化程度、氮掺杂的种类与含量及酞菁铁的负载状态.优化后的FePc-NHCS在碱性电解质中显示出优异的ORR催化活性,其半波电位和稳定性均高于商用Pt/C催化剂.研究结果表明,掺杂与复合是增强单项催化组分活性的有效途径.此外,通过调控催化剂的结构和组分也能有效地优化催化剂的氧化还原性能.  相似文献   

17.
以苯胺为原料,二氧化硅球为硬模板,采用原位聚合法制备出具有多孔结构的氮掺杂碳球,然后以三氯化铁为铁源,利用沉淀法制备出球状多孔Fe-N-C复合催化剂.通过SEM、TEM、EDS等分析手段对Fe-N-C的形貌结构及组成进行了表征,使用旋转圆盘电极测试了其在碱性条件下对氧还原反应的催化活性.结果表明,其起始电位(0.961 V vs RHE)与半波电位(0.835 V vs RHE)与商业化Pt/C相近,经过7 000 s后,Fe-N-C仍保持93.53%的相对电流,显示出优异的氧还原催化稳定性.  相似文献   

18.
以电催化为核心的新能源储存和转换技术为缓解能源与环境问题提供了有效手段.可充电锌空气电池因其理论能量密度(1086 Wh·kg–1)高、成本效益显著、安全系数高、环境友好及放电平稳等优点被认为是一种具有前景的能源存储/转换装置,有望在新能源汽车、便携式电源等领域广泛应用.氧还原反应(ORR)和氧析出反应(OER)是锌-空气电池中的核心反应,目前,虽然贵金属催化剂对上述反应表现出一定的电催化活性,但由于其稀缺性、高昂价格和低稳定性因素严重阻碍了它们在锌-空气电池中的广泛应用.而非贵金属催化剂所面临的瓶颈在于ORR/OER反应动力学缓慢,导致其在实际应用过程中存在电压效率低和催化剂腐蚀等问题.因此,为了推进锌-空气电池商业化进程,研制低成本、高效、稳定的非贵金属催化剂迫在眉睫.本文通过一步法将双金属前驱体嵌入氮掺杂有序介孔碳(NOMC)中,合成了具有尖晶石型铁钴氧化物的高性能非贵金属电催化剂(FexCo/NOMC,x代表铁钴的摩尔比).实验结果表明,在x=0.5时,所制备的催化剂具有最佳的催化活性,与商业贵金属催化剂相比,该催化剂展现更优的电催化活性和稳定性.电化学测试结果表明,其ORR的半波电位为0.89 V(vs.RHE),当OER电流密度为10 mA·cm–1时,过电势仅为0.31 V,且电流-时间曲线测试结果表明催化剂表现出较好的稳定性.通过X射线光电子能谱(XPS)、穆斯堡尔谱(M?ssbauer)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉曼光谱(Raman)等表征手段对电催化剂的物化性质进行表征,结果表明该材料优异的氧电催化性能归因于双金属氧化物的电子调控作用、NOMC的介孔结构、高导电性和高比表面积,其ORR与OER的催化活性位点分别是氮活化的碳(N-C)和双金属氧化物.以优化的Fe0.5Co/NOMC为正极组装可充电锌-空气电池,该电池在空气环境下展现出优良的充放电性能,其在电流密度为100 mA·cm–2条件下操作时能量密度达到820 Wh·kg–1,在1.0 V时功率密度达到153 mW·cm–2,它还表现出较好的稳定性,经过144 h的循环实验,活性没有明显下降.本文不仅制备了一种有前景的尖晶石型氧化物碳基氧电催化材料,还为高效氧电催化剂的合理开发与构筑提供了一条新的思路.  相似文献   

19.
迫在眉睫的环境和能源问题推动人类探索可行、可靠和可再生的能源技术.锌-空气电池和氢氧燃料电池等器件显示出高能量转换效率,但是仍有许多难题有待克服,例如阴极侧上缓慢的氧还原反应(ORR),以及高昂的成本极大地限制了铂基催化剂在商业上的广泛应用.因此,开发高性能的廉价ORR催化剂具有重要意义.过渡金属碳氮化合物(M-N-C, M=Co, Fe等)成为最有希望替代铂基催化剂的一类材料, M-N-C催化剂可以通过直接热解含有过渡金属、氮和碳物种的前驱体合成.然而热解时金属原子易团聚,多孔结构不能被有效地控制,导致相对较差的催化活性.目前, MOF衍生的催化剂在能源转化和储存技术中得到了广泛的关注,其具有丰富的氮含量、高比表面积和可调的孔道结构等特点.本文报道了一种简便可靠可控的合成铁氮共掺杂碳十二面体纳米结构催化剂的方法,并作为阴极电催化剂用于锌空气电池中,测试结果证实,合成的铁氮共掺杂的纳米碳具有与铂基材料相当的活性和更加优异的稳定性.表面吸附了的邻菲罗啉铁的ZIF-8在碳化过程中,氮基团能够结合铁形成Fe Nx结构单元,因此可得到铁氮共掺杂的电催化剂.粉末X射线衍射,扫描电镜证实ZIF-8的成功合成.经过热解得到的催化剂中Fe Nx或Fe Cx衍射峰较弱,表明样品中铁含量较低,存在部分无定型铁.通过拉曼光谱分析发现,引入的邻菲罗啉在热解过程中诱导了缺陷的形成,所以Fe-NCDNA-0的ID/IG比值明显高于NC.同时ID/IG随着铁含量的增加而减少,这是因为铁可以诱导石墨化,诱导效应随着铁含量的增加而增加.分析氮气吸附-脱附等温线得出,引入邻菲罗啉之后,比表面积增加;而铁的引入因其占据了微孔结构,导致比表面积下降.同时电镜证实Fe-NCDNA-2具有较大的形貌扭曲,使得该材料具有较大的比表面积.系统的电化学研究表明,氮掺杂有利于增强ORR活性,在引入铁之后形成高效的活性中心会进一步提高催化性能.因此, Fe-NCDNA-2在碱性条件下表现出优异的ORR性能.线性扫描伏安法曲线表明,铁氮共掺杂的材料表现出与Pt/C相似的性能,其中Fe-NCDNA-2的半波电位(E1/2)为0.863 V,比商业Pt/C的电位更正(E1/2=0.841 V).同时, Fe-NCDNA-2具有更加优异的稳定性,测试30000 s后的电流保持率为80%(Pt/C:64%).在中性介质中,合成的材料也展示了较高的ORR活性.Fe-NCDNA-2的E1/2=0.715 V,催化30000 s后电流保持率77%,均优于商业Pt/C催化剂.组装的锌空气电池进一步验证其作为氧还原催化剂实际应用的可行性.相比于以Pt/C为催化剂做空气阴极的电池,以Fe-NCDNA-2组装的电池表现出更高的开路电压,更高的功率密度(184 m Wcm~(-2)),以及更加优异的充放电循环稳定性.该工作也有利于启发研究人员探索类似的氮掺杂过渡金属碳材料在各种催化上的应用.  相似文献   

20.
基于氮掺杂碳载铁复合物的锌空电池氧阴极催化剂   总被引:1,自引:0,他引:1  
迫在眉睫的环境和能源问题推动人类探索可行、可靠和可再生的能源技术.锌-空气电池和氢氧燃料电池等器件显示出高能量转换效率,但是仍有许多难题有待克服,例如阴极侧上缓慢的氧还原反应(ORR),以及高昂的成本极大地限制了铂基催化剂在商业上的广泛应用.因此,开发高性能的廉价ORR催化剂具有重要意义.过渡金属碳氮化合物(M-N-C, M=Co, Fe等)成为最有希望替代铂基催化剂的一类材料, M-N-C催化剂可以通过直接热解含有过渡金属、氮和碳物种的前驱体合成.然而热解时金属原子易团聚,多孔结构不能被有效地控制,导致相对较差的催化活性.目前, MOF衍生的催化剂在能源转化和储存技术中得到了广泛的关注,其具有丰富的氮含量、高比表面积和可调的孔道结构等特点.本文报道了一种简便可靠可控的合成铁氮共掺杂碳十二面体纳米结构催化剂的方法,并作为阴极电催化剂用于锌空气电池中,测试结果证实,合成的铁氮共掺杂的纳米碳具有与铂基材料相当的活性和更加优异的稳定性.表面吸附了的邻菲罗啉铁的ZIF-8在碳化过程中,氮基团能够结合铁形成Fe Nx结构单元,因此可得到铁氮共掺杂的电催化剂.粉末X射线衍射,扫描电镜证实ZIF-8的成功合成.经过热解得到的催化剂中Fe Nx或Fe Cx衍射峰较弱,表明样品中铁含量较低,存在部分无定型铁.通过拉曼光谱分析发现,引入的邻菲罗啉在热解过程中诱导了缺陷的形成,所以Fe-NCDNA-0的ID/IG比值明显高于NC.同时ID/IG随着铁含量的增加而减少,这是因为铁可以诱导石墨化,诱导效应随着铁含量的增加而增加.分析氮气吸附-脱附等温线得出,引入邻菲罗啉之后,比表面积增加;而铁的引入因其占据了微孔结构,导致比表面积下降.同时电镜证实Fe-NCDNA-2具有较大的形貌扭曲,使得该材料具有较大的比表面积.系统的电化学研究表明,氮掺杂有利于增强ORR活性,在引入铁之后形成高效的活性中心会进一步提高催化性能.因此, Fe-NCDNA-2在碱性条件下表现出优异的ORR性能.线性扫描伏安法曲线表明,铁氮共掺杂的材料表现出与Pt/C相似的性能,其中Fe-NCDNA-2的半波电位(E1/2)为0.863 V,比商业Pt/C的电位更正(E1/2=0.841 V).同时, Fe-NCDNA-2具有更加优异的稳定性,测试30000 s后的电流保持率为80%(Pt/C:64%).在中性介质中,合成的材料也展示了较高的ORR活性.Fe-NCDNA-2的E1/2=0.715 V,催化30000 s后电流保持率77%,均优于商业Pt/C催化剂.组装的锌空气电池进一步验证其作为氧还原催化剂实际应用的可行性.相比于以Pt/C为催化剂做空气阴极的电池,以Fe-NCDNA-2组装的电池表现出更高的开路电压,更高的功率密度(184 m Wcm^-2),以及更加优异的充放电循环稳定性.该工作也有利于启发研究人员探索类似的氮掺杂过渡金属碳材料在各种催化上的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号