首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善TiO_2光催化剂光生电子-空穴对复合率高、太阳光利用率低的缺陷,采用溶剂热法控制氧化剥离的少层Ti_3C_2MXene(DL-Ti_3C_2),制备TiO_2/DL-Ti_3C_2复合光催化剂,并通过降解罗丹明B溶液,研究其光催化性能。结果表明,TiO_2/DL-Ti_3C_2复合光催化剂能有效吸收可见光,且光催化性能明显优于DL-Ti_3C_2和P25。当溶剂热氧化温度为160℃时,复合材料具有最佳的光催化性能。当氧化温度过低时,催化剂中形成的TiO_2量不足,产生的光生电子-空穴对数量较少,导致催化剂性能较差;当氧化温度过高时,DL-Ti_3C_2减少,降低了材料导电性,光生电子-空穴对复合效率高,导致催化剂性能变差。因此,通过改变DL-Ti_3C_2的氧化温度,可以调控TiO_2/DL-Ti_3C_2复合材料中TiO_2和DL-Ti_3C_2的相对含量,使二者产生协同作用提高复合光催化剂的可见光催化活性。  相似文献   

2.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

3.
二氧化钛基Z型光催化剂综述(英文)   总被引:1,自引:0,他引:1  
TiO_2具有无毒、耐腐蚀、高稳定和低成本等特点,已被广泛应用于光催化领域.然而,TiO_2的禁带较宽,只能吸收仅占太阳光4%的紫外光部分,从而严重限制了TiO_2光催化材料对太阳光的有效应用.目前很多方法被用来提高TiO_2光催化效率,如金属/非金属掺杂、贵金属负载、异质结构建和与碳材料复合等,这些策略在提高光催化剂的光催化效率中,涉及到如何兼顾太阳光利用和光生空穴和电子氧化还原能力两者之间的平衡.通常,半导体禁带宽度越窄,半导体的光谱响应范围越宽、太阳光利用越多,但光生空穴和电子氧化还原能力越弱.因此,想要提高TiO_2的光催化性能,应考虑以下两个方面的平衡:即降低带隙宽度,拓展半导体的光谱响应范围;与之同时使价带电位更正,导带电位更负之间的平衡.然而,这两个点是相互矛盾的,因此很难在单组分光催化剂中同时实现这两点.然而,Z型光催化剂可以同时满足这两点要求,即:降低半导体的带隙,同时使导带更负,价带更正,因为Z光催化系统利用了两种半导体的优势,其电荷转移机制类似于自然界中绿色植物的光合作用,其中的载流子传输途径包括两步激发,类似于英文字母"Z",Z型光催化剂因此而得名.Z型光催化剂既能保留较高还原能力的光生电子和又能保留较高氧化能力的光生空穴,由于Z型光催化剂特有的优点,在光催化领域的应用越来越广泛.本文综述了TiO_2基Z型光催化剂的最新研究进展,其中包括:Z型光催化机理、应用范围和光催化活性改进方法.Z型光催化剂分为传统液相Z型光催化体系,全固态Z型光催化体系,以及最近几年发展起来的直接Z型光催化体系.它们的主要应用包括:光催化分解水产氢、二氧化碳还原制备太阳燃料、有机污染物光催化降解.论文进一步讨论了提高TiO_2基Z型光催化剂性能的方法,包括pH值调控、电子导体选择、助催化剂使用、掺杂改性、组织形貌控制、两种半导体质量比优化等.最后,提出了TiO_2基Z型光催化剂今后面临的挑战和发展前景展望.  相似文献   

4.
采用溶胶-超声辐照技术同步合成了生物质C-N-P自掺杂TiO_2复合催化剂,通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(FESEM)、紫外-可见漫反射光谱(UV-Vis-DRS)及光致发光光谱(PL)对样品进行了表征.以亚甲基兰(MB)为目标污染物,研究了C-N-P共掺杂TiO_2的可见光光催化性能.实验结果表明,在可见光照射下,光催化反应时间为2 h时,C-N-P共掺杂TiO_2复合催化剂对亚甲基兰的降解效率最高可达9 8.5%;相比纯TiO_2,C-N-P共掺杂TiO_2复合催化剂的比表面积增大,吸收边带红移,禁带宽度减小,相变温度升高,光生载流子复合率降低.  相似文献   

5.
TiO_2广泛用作半导体光催化材料,但由于自身对光利用率低(只吸收紫外光)、禁带宽度较大、光生载流子复合率极高,限制了它在相关领域的应用.为此,设计了Ti~(3+)离子自掺杂来克服TiO_2半导体材料的上述缺点,进而提高其光催化活性.在不引入其他元素的情况下,以TiOF_2为原料,Zn粉为还原剂,在水热条件下采用拓扑相变法原位制备了具有可见光响应的Ti~(3+)自掺杂空盒状TiO_2(记为Ti~(3+)/TiO_2)催化剂材料.掺杂金属离子可以改变半导体TiO_2的结晶度和产生晶格缺陷,形成电子或空穴的捕获中心,影响电子-空穴对的复合;同时,掺杂金属离子产生的晶格缺陷有利于Ti~(3+)和氧空位的形成,有利于提高TiO_2的量子效率.Ti~(3+)掺杂是一种既清洁又未引入其他金属离子的掺杂改性方法,它能有效保持催化剂的结构和形貌不受其他金属离子的影响.总之,金属离子掺杂有效拓展了TiO_2的光吸收范围,并极大地提高了TiO_2的光催化活性.本文研究了不同量的还原剂对催化剂空盒状TiO_2结构形貌影响,以及在可见光下光催化降解罗丹明B反应性能,发现Ti~(3+)/TiO_2催化剂均拥有非常好的光催化活性,其中R0.25催化剂在可见光下120 min,RhB降解率达到96%,是TiO_2的4倍多.且可循环使用5次的光催化循环降解实验后,表现出较高的稳定性.催化剂经过Ti~(3+)自掺杂后,对催化剂自身的空盒状结构形貌并无很大的影响,随着还原剂Zn粉的量增加,Ti~(4+)还原形成Ti~(3+)数量增加,导致形成更多的氧空位.皆为锐钛矿型TiO_2,与未掺杂Ti~(3+)的TiO_2比较发现,自掺杂Ti~(3+)的TiO_2的(105)XRD衍射峰越来越尖锐,(004)衍射峰越来越宽.随着还原剂Zn粉质量的逐渐增加,催化剂的光响应范围拓宽到可见光区,且逐渐增强.这说明Ti~(3+)的掺杂不仅提高了TiO_2在可见光的响应能力,也提高了TiO_2在紫外光范围的响应能力.另外,掺杂后的TiO_2禁带宽度的减小,使其价带上的电子更容易被可见光激发,产生更多的电子-空穴对参与光催化反应,从而提高TiO_2的光催化效率.  相似文献   

6.
通过氢还原TiO_2中空微球制备有缺陷的TiO_(2-x)中空微球。采用冷场发射扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射法(XRD)、X射线光电子能谱(XPS)、电子顺磁共振波谱(ESR),拉曼光谱仪、紫外-可见漫反射光谱(UV-Vis DRS)和电化学测试等对制得的光催化剂进行了结构和性能表征。采用可见光催化降解亚甲蓝(MB)性能对光催化剂的光催化活性进行评价。分析了提高光催化活性的机理及MB的降解机理。在探讨MB初始浓度对降解过程的影响的基础上提出了一种新的光催化降解染料动力学模型。结果表明TiO_(2-x)中空微球的光催化活性优于TiO_(2-x)是因为形成了具有更高比表面积的中空微球结构。降解MB分子的氧化剂为h~+、·O_2~-和·OH,其中仅由光生空穴生成的·OH起了主要作用。与拟一级动力学模型相比,新的模型可以更真实有效地描述光催化降解MB过程,因为不仅其计算结果更符合实验数据,而且该模型中的速率常数不随染料初始浓度的变化而变化。  相似文献   

7.
Bi OI具有独特的层状结构及较窄的带隙,是具有可见光响应的光催化剂.然而,高光生载流子复合率抑制了其光催化活性.大量研究表明,氧缺陷不但是催化剂表面最具活性的位点,而且可以通过减小禁带宽度扩大光响应范围.与此同时,氧缺陷也可以作为光致电荷陷阱,抑制电子-空穴复合,并作为电荷转移到吸附物种的吸附位点.金属的表面等离子体共振(SPR)效应为半导体材料更高效的光吸收和利用提供了一条崭新的途径,从而可以获得更好的太阳光转换和光催化效率.然而, SPR效应和由氧缺陷引起的多个中间能级协同作用还未被探究.本文研究了利用金属铋的SPR效应和引入缺陷共同提高BiOI的光催化性能.通过部分还原BiOI制备出具有较高可见光催化去除氮氧化物活性的Bi@缺陷型BiOI,研究了还原剂用量对Bi@缺陷型Bi OI光催化性能的影响.发现用2 mmol还原剂Na BH4制备的光催化剂(Bi/BiOI-2)具有最高效的可见光催化活性.XRD、XPS、SEM和TEM表征表明Bi单质沉积在Bi OI表面,整个体系由纳米片自组装为海绵状立体结构.BET比表面积增大,结合SEM推测是由纳米片的分层堆叠造成的.UV-DRS表明带隙宽度仅有1.8 eV的Bi OI具有可见光响应.EPR和态密度(DOS)结合可以证明氧缺陷及其激发多个中间能级的存在.中间能级可以促进电子在可见光下从价带到导带的转移.PL表明体系中Bi金属的SPR效应所激发的电磁场可以促进光生载流子的分离.通过DFT理论计算催化剂的电子结构,差分、电子局域函数(ELF)及电势表明Bi单质和Bi-O层间强的共价作用形成一个通道,使得热电子从较高电势的Bi单质向相对低电势的Bi OI传递, Bi单质PDOS的计算证明价带变宽归因于Bi元素轨道的贡献, Bi的SPR效应激发Bi OI的电子到更高能级并聚集在价带顶,这有利于光生载流子的分离.ESR表明提升的电荷分离和迁移率促进了羟基和超氧自由基的产生.结合表征及理论计算结果,活性的增强可归因于金属Bi和氧空位的协同效应.氧缺陷激发的中间能级促进了电荷转移, Bi金属的SPR效应使可见光吸收效率提高并且促进了光生载流子分离,这些是增强光催化性能的关键因素.此外,采用原位红外光谱法(FT-IR)对Bi/BiOI-2的NO吸附和反应过程进行了动态监测.根据中间产物分析和DFT计算结果,提出了金属Bi和氧空位协同作用提高Bi/BiOI光催化性能的机理.本研究为高性能光催化剂的设计和理解空气净化光催化反应机理提供了新的思路.  相似文献   

8.
2-仲丁基-4,6-二硝基苯酚(DNBP)作为杀虫剂、除草剂和烯烃基芳香族化合物阻聚剂而被广泛地应用于工农业生产中.在DNBP生产和使用过程中,会产生大量难以降解的有机废水,从而对人类和生态环境造成极大危害.因此,开展含DNBP废水的处理技术和方法研究具有重要的现实意义.TiO_2半导体材料由于具有良好的光化学特性和电化学行为,近几十年来一直是光催化领域的研究热点.在能量等于或大于TiO_2的带隙能级的辐照光照射下,TiO_2可以产生光生电子/空穴对(e~-/h~+).光生电子和空穴分别与TiO_2表面被吸附的H_2O和O_2分子反应,生成具有强氧化性的活性羟基自由基(·OH),对硝基酚类有机污染物具有较强的降解能力.TiO_2光催化反应属于非均相反应,反应在催化剂的表面进行,催化剂对污染物的吸附是影响其催化降解性能的重要因素.但是,传统TiO_2光催化剂存在比表面积小,对有机污染物吸附能力差,光生电子与空穴易于复合等缺陷,限制了TiO_2光催化技术的进一步发展和在水处理领域中的大规模应用.我们基于气凝胶具有多孔性、大比表面积和高孔隙率的特点,以富含硅、铝的工业废弃物粉煤灰为反应原料,首先利用碱熔法和常压干燥技术制备出SiO_2-Al_2O_3气凝胶.在此基础上,以钛酸四丁酯(TBOT)为反应前体,SiO_2-Al_2O_3气凝胶为载体,利用酸催化溶胶-凝胶法(sol-gel)制备出TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂.利用X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、N_2吸附-脱附(BET)、紫外-可见吸收光谱(UV-vis)等分析测试技术对所制备的TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂结构进行了表征.结果显示,在TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂中,粒径尺寸为10~30 nm的锐钛矿型TiO_2纳米颗粒均匀分散在SiO_2-Al_2O_3气凝胶载体上.TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂呈现典型介孔材料的IV型等温线.SiO_2-Al_2O_3气凝胶的加入极大提高了TiO_2光催化剂的比表面积和对有机污染物的吸附性能,但是对TiO_2光波吸收范围影响不大.在制备出TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂基础上,进一步对其在可见光条件下的光催化性能进行了研究.以500 W的Xe灯光源模拟自然太阳光,DNBP为探针污染物分子,系统考察了可见光照射条件下溶液p H值、光催化剂用量、光反应时间、DNBP溶液初始浓度不同因素对TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂催化活性的影响.结果表明,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP有机污染物的吸附率和光降解率明显高于纯TiO_2样品.在DNBP溶液初始浓度为0.167 mmol/L,p H=4.86,催化剂用量6 g/L,光照时间5 h的条件下,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP的降解率几乎高达100%.根据Langmuir-Hinshelwood方程,在低浓度下光催化降解反应符合一级反应动力学.所制备的TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂具有良好的稳定性和重复利用性能.重复利用5次后,TiO_2/SiO_2-Al_2O_3气凝胶三元复合光催化剂对DNBP的降解率仍高达90%以上.利用紫外-可见分光光度计、气相-质谱联用仪对DNBP降解中间产物进行了分析,探讨了DNBP的光催化降解机理.  相似文献   

9.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

10.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

11.
TiO_2光催化剂具有无毒、物理化学性质稳定及光催化活性较高等优点,因而在能源及环境净化等领域备受关注.但是,TiO_2纳米颗粒作为催化剂仍存在以下不足:(1)TiO_2带隙较宽,只能吸收利用太阳光能的紫外光部分,而照射到地球表面的太阳光大部分为可见光;(2)光生载流子(电子/空穴)的复合使得光催化活性不高;(3)纳米催化剂的回收利用困难;(4)单独使用TiO_2,成本较高;(5)针对低浓度有机污染,常见TiO_2催化剂比表面积较小,吸附富集能力较差,导致光催化降解效率较低.TiO_2自身这些缺陷大大限制了其进一步的实际应用.针对上述这些问题,我们在本研究中设计了一种简便易行的溶胶凝胶法,在较低的温度(70℃)下合成了非金属C-Cl共掺杂的TiO_2/凹凸棒(TiO_2/ATT)复合催化剂.XRD及HRTEM分析证明,通过调节反应溶液的pH可以分别合成含锐钛矿/金红石、锐钛矿/金红石/板钛矿的两相和三相的混合相TiO_2,且锐钛矿/金红石比例可以通过改变pH而进行调节.XPS分析证明,C和C1同时成功掺进TiO_2/ATT复合催化剂.UV-Vis漫反射结果显示,非金属C和C1的掺杂使得所合成复合催化剂的光吸收性能明显拓展到可见光区,因而可以充分利用可见光能进行有机污染物催化降解,而ATT作为TiO_2的载体,减少了TiO_2使用量,改善了TiO_2的表面特性和孔结构,且有利于光催化剂的回收利用.以酸性红G为目标有机污染物,在可见光照射下对复合催化剂的可见光催化活性进行了测试.结果表明,当合成反应体系的pH值为3.0时,所获得的锐钛矿/金红石/板钛矿三相TiO_2/ATT复合催化剂具有良好的可见光吸收特性,其可见光催化活性远远高于市售P25型TiO_2,对难降解的酸性红溶液G具有优异的脱色效果和良好的TOC去除性能.循环光催化实验和FTIR表征结果表明,在5次循环利用后,TiO_2/ATT复合催化剂仍表现出很高的催化活性,表明其稳定性优异.荧光分析和自由基捕获实验表明,光催化降解反应中的主要活性物种是羟基自由基、空穴和超氧自由基.TiO_2/ATT复合催化剂高效稳定的可见光催化性能主要归因于:(1)非金属C和Cl的共掺杂改善了其可见光吸收性能;(2)催化剂中的TiO_2由金红石、锐钛矿和板钛矿混合相组成,有利于抑制光生载流子的复合;(3)多孔结构的ATT作为载体提高了TiO_2的比表面积,增加了反应活性位,同时改善了孔结构,从而有利于模拟有机污染物(酸性红G)分子的吸附和降解,有利于反应产物扩散,从而提高了催化剂的可见光催化效率.  相似文献   

12.
抗生素的滥用导致了严重的水体污染,如何处理水体中难以降解的抗生素是目前环境领域中重要的研究课题之一.研究发现,二氧化钛具有优良的光催化性能,但由于其宽能带(~3.2 eV),导致其低抗生素的降解率.本文构建了一种新型的碳氮共改性中空二氧化钛光催化剂(C/N-TiO_2),研究发现,所制备的C/N-TiO_2不仅能提高二氧化钛的可见光吸收,而且还有效地降低了其禁带宽度,因此能大大地提高其对四环素的降解能力和降解速率.该新型的C/N-TiO_2光催化剂主要利用阳离子聚苯乙烯作为创造二氧化钛中空结构的模板和碳源,在氨/氩混合气作用下煅烧,能同步制备出碳-氮共改性的中空二氧化钛光催化剂.TEM和SEM电镜图清晰显示出C/N-TiO_2具有良好的中空结构.STEM Mapping测试证实碳和氮元素都均匀地分布在C/N-TiO_2的中空微球上,实现了其良好的改性.N1s的XPS谱图显示出在N-TiO_2和N-TiO_(2-x)的特征峰的存在,证实了氮掺杂TiO_2的成功合成.固体紫外也进一步证实了C/N-TiO_2不仅具有强的紫外光吸收,还因碳和氮共改性呈现出强的可见光吸收.更重要的是,这种碳/氮共改性有效地降低了TiO_2的禁带宽度(~2.83 eV).研究了C/N-TiO_2光催化剂在可见光和模拟太阳光作用下,对四环素类的光催化降解行为,并与碳改性的中空二氧化钛(C/TiO_2)的进行比较.结果表明,在可见光作用下,C/N-TiO_2光催化剂在30 min内能降解大约86.3%四环素,高于C/TiO_2对四环素(76.4%).在可见光降解氯四环素时,C/N-TiO_2也取得了比C/TiO_2更高的降解率.我们进一步测试了两种催化剂在模拟太阳光作用下的催化性能差异.结果表明,C/TiO_2对四环素降解率达到98.3%,而C/N-TiO_2在30 min内几乎实现了四环素的完全降解(99.6%).根据Langmuir-Hinshelwood计算出四环素的降解速率,发现C/N-TiO_2对四环素的降解速度为0.1812min~(-1),是同样条件下C/TiO_2的1.4倍.结果表明,所研制的C/N-TiO_2无论是在可见光还是在模拟太阳光作用下,都比C/TiO_2展现出更高的四环素和氯四环素的降解率.以上结果清晰的表明碳氮共改性因其协同效应,比碳改性在提高TiO_2的催化性能方面起着更重要的作用.本文用质谱进一步研究了四环素光降解的中间体,并提出了其可能的降解路径.光催化循环实验证明,所制备的C/N-TiO_2在循环四次后,其对四环素的降解率都没有发生明显的下降,说明C/N-TiO_2具有良好的循环稳定性能,为其潜在的应用奠定了坚实的基础.  相似文献   

13.
半导体光催化技术是利用太阳能消除有机污染物的最佳解决方案之一.二氧化钛(TiO_2)是在该领域应用最广泛的光催化剂,具有无毒、廉价、抗光致腐蚀等优异性能.然而,纯TiO_2在可见光下的光催化活性较差,这限制了TiO_2光催化技术的进一步发展和实际应用.对此,学者们进行了多方面研究来拓展TiO_2对可见光的吸收范围并提升其光催化活性.研究表明,对TiO_2进行碳掺杂是拓展其光吸收范围和增强其可见光催化活性的有效方法.粉煤灰是燃煤电厂原煤燃烧产生的一种固体废物.粉煤灰的随意堆积和不适当处置可导致土壤、空气、水甚至生态系统的严重污染.因此,粉煤灰的回收利用引起了许多研究者的关注.事实上,粉煤灰有其自身独特的优点,如无毒、低成本和化学/物理稳定性等.这些性质使得粉煤灰可以作为一种很有前景的催化剂载体材料.最近,很多学者以粉煤灰为载体合成了多种TiO_2/粉煤灰复合光催化剂,并对所制备催化剂的结构、性质及其光催化性能进行了研究.但是,将碳掺杂TiO_2与粉煤灰进行耦合的研究一直未见报道,而且关于粉煤灰载体对TiO_2光催化活性的促进机理,特别是粉煤灰负载对TiO_2能带结构及其光催化活性的影响仍缺乏深入和系统的研究.本文采用简单的溶胶浸渍+炭化的方法制备了碳掺杂TiO_2/粉煤灰载体(C-TiO_2/FAS)复合光催化剂.其中的碳掺杂组分源于合成过程中加入的有机成分(钛酸四丁酯、乙酸和乙醇),在负载及炭化过程中这些有机组分同步进入TiO_2体相及表面形成碳掺杂.采用多种表征方法对所制备的光催化剂进行了表征. XRD, SEM和XPS表征结果表明, C-TiO_2组分很好地包覆在粉煤灰球形颗粒表面.XPS和ATR-FTIR表征结果表明,随着C-TiO_2与FAS的耦合,C-TiO_2表面原有的羧基螯合结构被破坏,并在其界面上形成了Si–O–C和Al–O–Ti键.UV-VisDRS和VB-XPS表征结果表明,碳掺杂缩减了TiO_2的禁带宽度,显著拓展了光吸收范围.Si–O–C和Al–O–Ti键的存在引起了C-TiO_2价带边的正向移动,意味着光生空穴氧化能力增强.稳态PL及时间分辨PL表征结果表明, C-TiO_2/FAS光生载流子的复合率较低.在可见光催化活性测试中, C-TiO_2/FAS对甲基橙展示出较高的光催化降解效率,这主要是由于C-TiO_2/FAS较低的价带位置增强了光生空穴的氧化能力,进而提高了催化剂对甲基橙的降解效率.自由基捕获实验结果表明,在降解过程中光生空穴及超氧自由基是关键活性物种.此外,C-TiO_2/FAS可以很方便地通过自然沉降进行固液分离,并表现出很好的重复利用降解活性.  相似文献   

14.
随着全球工业的发展,大量有机污染物排放到水中,已经威胁到人类健康.自1972年Fujishima和Honda发现TiO_2半导体材料可在光照下分解水以来,光催化技术作为一种新型污水处理方法引起广泛重视.近几十年来,光催化已被广泛研究,已成为水体净化领域最有前途的方法之一.TiO_2光催化剂由于具有无毒、耐腐蚀、高稳定和低成本等特点,在光催化领域受到广泛关注,是最具有开发前景的光催化材料之一.然而,TiO_2的禁带较宽,只能吸收仅占太阳光4%的紫外光部分,这严重限制了TiO_2光催化材料对太阳光的有效应用.最新研究结果表明,适量缺陷的存在可以拓展TiO_2对可见光的响应,从而通过提高其对太阳光的利用效率来有效提升TiO_2的光催化活性.因此,研究半导体缺陷与其光催化剂性能的关系,对于提升光催化污染物降解性能具有重要意义.本工作采用水热法和溶胶-凝胶法分别制备了具有氧缺陷的和无缺陷的TiO_2,用于研究氧缺陷对TiO_2光催化活性的影响.所制备的氧缺陷TiO_2纳米材料为浅蓝色,光的吸收波长向可见光区(~420 nm)拓展.拉曼光谱和X射线光电子能谱(XPS)测试均证明溶胶-凝胶法制备的TiO_2中氧空缺位的浓度低于水热合成TiO_2的氧空缺位浓度.光化学测试结果表明,氧缺陷TiO_2在模拟太阳光下的光电流响应增强,这是由于氧缺陷的引入导致能带隙内出现了新的电子态,使得禁带宽度变窄.在光降解亚甲基蓝(MB)的实验中,氧缺陷TiO_2材料表现出更高的光催化活性.根据密度泛函理论(DFT)计算和荧光光谱测试结果,讨论了氧缺陷TiO_2的光催化机理.  相似文献   

15.
二氧化钛(TiO_2)因廉价、无毒、化学性质稳定以及具有较强的光催化氧化还原能力,在光催化领域占据着重要的地位。然而,可见光利用率低以及光生电子-空穴对的快速复合是限制其应用的2个主要因素。二氧化钛基Z型异质结作为一种新型光催化剂,既改善了二氧化钛的2个缺陷,又表现出比TiO_2更强的氧化或还原能力。本文概括了TiO_2光催化剂、异质结光催化剂和TiO_2基Z型光催化剂的能带排列和电子传递原则,探讨了Z型异质结和type-Ⅱ异质结的异同点以及区分方法,并归纳总结了TiO_2基Z型异质结在光催化领域中的应用。  相似文献   

16.
韩穗奇  李佳  杨凯伦  林隽 《催化学报》2015,(12):2119-2126
窄带半导体氧化铋(Bi2O3,带宽介于2.1-2.8 eV)因其强的可见光吸收和无毒性等特性而一直被认为是潜在的可见光催化材料.通常, Bi2O3具有a,b,g,d,e和w等六种晶型,其中,a,b和d-Bi2O3具有催化可见光降解有机物的活性.可是,由于其光生电子-空穴复合较快, Bi2O3的光催化活性还很低,远不够实际应用.将半导体与另一种物质如贵金属或其他半导体复合形成异质结是一种有效控制光生电子-空穴复合,提高光催化活性的方法.目前已成功开发了许多Bi2O3基的异质结光催化材料.尤其是通过用卤化氢酸与a-Bi2O3直接作用原位形成的a-Bi2O3与铋的卤氧化合物BiOX (X = Cl, Br或I)的异质结在提高光催化活性和制备方面显示了优越性.然而,具有更强可见光吸收的b-Bi2O3(带宽约2.3 eV)与卤氧化合物的异质结光催化性能却鲜有报道.本文通过用HI原位处理b-Bi2O3形成b-Bi2O3/BiOI异质结.该异质结表现较纯b-Bi2O3和BiOI更高的降解甲基橙(MO)可见光催化活性.通过多晶X射线衍射(XRD)、紫外漫散射(UV-DRS)、扫描电镜、透射电镜(TEM)、X光电子能谱(XPS)和荧光(PL)等手段研究了b-Bi2O3/BiOI异质结,并提出其高催化活性的机理. XRD结果显示,用HI原位处理b-Bi2O3可形成BiOI相,并且随着HI使用量增加,混合物中的BiOI相逐渐增多. HRTEM结果进一步表明,在混合物中的b-Bi2O3和BiOI都是高度结晶态,且两相之间有很好的接触,从而有利于两相之间的电荷移动.根据UV-DRS和ahv =A(hv –Eg)n/2等公式,计算出了b-Bi2O3和BiOI带隙分别为2.28和1.77 eV,以及两种半导体的导带和价带位置. b-Bi2O3的导带和价带位置分别为0.31和2.59 eV,而BiOI的导带和价带位置分别为0.56和2.33 eV.这样两种半导体能带结构呈蜂窝状,显然不适合光生电子-空穴的分离.然而, XPS测定结果显示,b-Bi2O3和BiOI相互接触形成异质结后,b-Bi2O3相的电子向BiOI相发生了明显的移动.根据文献报道,当两种费米能级不同的半导体接触时,电子会从费米能级高的半导体移向费米能级低的半导体,直至建立新的费米能级.b-Bi2O3被报道是典型的n型半导体,其费米能级在上靠近其导带位置;而BiOI是典型的p型半导体,其费米能级在下靠近其价带位置.基于此,我们提出了b-Bi2O3/BiOI异质结高催化活性的机理.当b-Bi2O3与BiOI形成异质结时,由于b-Bi2O3的费米能级较BiOI的高,因而电子从b-Bi2O3转向BiOI,直至新的费米能级形成.因此电子在两相之间移动导致了b-Bi2O3能带结构整体下移,以及BiOI能带结构整体上移,使得新形成的BiOI导带和价带位置高于b-Bi2O3的.当该异质结在可见光的照射下,光生电子将移至b-Bi2O3的导带,而空穴会移至BiOI的价带,最终达到了光生电子-空穴分离的效果,产生高的光催化活性. PL测试也证实了b-Bi2O3/BiOI异质结具有更长的光生电子-空穴寿命.  相似文献   

17.
首先利用水热法制备了由纳米片组装的粒径为1.5–2μm的Bi2WO6微球,然后在微球表面沉积了不同含量的AgCl (5 wt%,10wt%,20wt%,30wt%),制备了异质结构AgCl/Bi2WO6微球光催化剂.利用X射线粉末衍射、扫描电镜、透射电镜、红外光谱、紫外-可见漫反射吸收等手段对所制的光催化剂进行表征,并以紫外光和可见光分别为光源,罗丹明B为降解对象测试了其光催化活性,考察复合不同含量的AgCl对Bi2WO6光催化剂的性能影响.结果表明,沉积AgCl对Bi2WO6的晶体结构、表面性能和光吸收性能没有产生明显影响,但大幅度提高了Bi2WO6的紫外和可见光催化活性.当复合20wt%AgCl时, AgCl/Bi2WO6光催化活性最佳,紫外光下比纯Bi2WO6提高了2.2倍,可见光下提高了1倍.这主要是由于形成的AgCl/Bi2WO6异质结能有效抑制光生电子和空穴的复合,从而提了其光催化性能.  相似文献   

18.
TiO_2因其毒性低、稳定性高、制备成本低廉而获得广泛应用,特别是作为光催化剂在降解环境污染物方面受到了广泛关注;然而,纯TiO_2较大的光生载流子复合率和较宽的带隙限制了其应用.元素掺杂作为一种拓宽光催化剂光吸收能力的方法广泛应用于各种光催化剂的修饰改性,而两种具有光催化性能的TiO_2相共存则能有效抑制光生载流子的复合,因此采取合适的方法有效利用这两种TiO_2改性的方法制备得到更具实际应用潜质的光催化剂具有一定的可行性.本文通过简单的溶胶-凝胶过程向锐钛矿相与金红石相组成的混相TiO_2中共掺杂碳和钇得到了一种活性较高的可见光响应光催化剂.采用粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电镜等表征手段研究了碳和钇掺杂对TiO_2结构的影响,发现碳掺杂有利于金红石相的形成且材料具有更大的晶粒尺寸,钇掺杂则有利于锐钛矿相的形成且能细化材料的晶粒尺寸,提高材料的比表面积,导致材料更好的光催化活性.材料在30 W荧光灯光照条件下的光催化降解亚甲基蓝(MB)性能的研究显示,C-Y-TiO_2样品具有比单掺杂和未掺杂样品更高的光催化活性,其顺序为C-Y-TiO_2Y-TiO_2C-TiO_2TiO_2≈P25.此外,降解反应动力学研究表明C-Y-TiO_2样品光降解MB的速率是未掺杂样品在相同条件下降解速率的3.5倍.不同钇掺杂含量样品的结构和光催化降解MB的研究结果表明,钇掺杂显著促进了锐钛矿相TiO_2的形成.这说明钇可能仅掺杂进入锐钛矿相,因此合适的钇掺杂量才能有效形成最优化的光催化性能的混相TiO_2.不同热处理温度下获得的样品的光降解MB特性也表明,一定的热处理温度有利于合适的锐钛矿相和金红石相的组成,从而有利于相间的协同效应.紫外-可见光谱和荧光光谱表征分析表明,碳和钇的掺杂都拓展了其吸收光谱到可见光区域,且抑制了光生电子和空穴对的复合,进而提高了材料的光催化活性.碳和钇共掺杂的混相TiO_2具有较高可见光光催化活性的主要原因有两个方面:一是元素掺杂减小了TiO_2的带隙使得材料具有可见光响应;二是金属和非金属元素在锐钛矿相与金红石相TiO_2中不同的掺杂特性形成的协同效应,抑制了光生电子和空穴的复合.  相似文献   

19.
光解水制氢技术是解决能源环境问题的理想途径.本研究采用水热法及离子交换法制备出TiO_2纳米棒,再用水热法将MoS_2担载到TiO_2表面制备MoS_2/TiO_2复合光催化剂.通过X射线衍射、紫外可见漫反射光谱和电镜对MoS_2/TiO_2进行表征.结果表明水热合成的锐钛矿TiO_2为棒状结构,负载并未改变TiO_2的晶型和形貌.活性测试表明,负载MoS_2后,TiO_2产生的光生电子能迅速传递到MoS_2表面,抑制了光生电子-空穴的复合,从而显著提高产氢活性.当负载量为0. 5%(w)时活性最高,为545. 6μmol/h,达到未负载MoS_2时的4. 2倍.  相似文献   

20.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号