首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用沉积-沉淀法再辅以微波干燥和焙烧制备了金属氧化物负载的金簇合物和小的金纳米粒子.干燥方法影响了金颗粒尺寸.在炉干燥过程中Au(III)因部分还原而致使Au聚集.相反,在微波干燥下,因快速和加热均一而使Au(III)得以保持,在Al2O3上负载的Au颗粒尺寸小至1.4 nm.该法可用于具有几种不同微波吸收效率的金属氧化物载体,如MnO2,Al2O3和TiO2.这些催化剂在低温CO氧化和硫化物选择有氧氧化反应中的催化活性比常规方法制备的更高.  相似文献   

2.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe_2 O_3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe_2 O_3(S))相比,氧化铁纳米棒(α-Fe_2 O_3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe_2 O_3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明, Au/α-Fe_2 O_3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现, Au/α-Fe_2 O_3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe_2 O_3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明, Au/α-Fe_2 O_3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

3.
甲醛是一种常见的室内空气污染物,人们针对其消除已经做了大量的研究工作.催化氧化法是脱除挥发性有机物的一种重要方法,能在较低温度下通过催化剂作用将甲醛完全氧化为无毒的CO_2和H_2O.所用催化剂主要为负载型贵金属催化剂和非贵金属催化剂,但只有担载贵金属Pt或Pd的催化剂可在室温下将甲醛完全氧化,而非贵金属一般则需要较高的温度.Au催化剂是近年来催化领域的一个研究热点,但是关于纳米Au催化剂室温消除甲醛的研究较少.本课题组前期研究发现,以可还原性氧化物(CeO_2,Fe O_x)为载体负载的Au催化剂具有优异的室温氧化甲醛活性;并且突破以可还原性载体负载金的传统思路,首次发现"惰性载体"γ-Al_2O_3,负载的金催化剂在室温、有水条件下具有优异的甲醛氧化活性.本文对比了还原性氧化物(CeO_2,Fe O_x)和非还原性氧化物(Al_2O_3,SiO_2和HSZM-5)载体负载金催化剂,研究了载体氧化还原性质对负载金催化剂在高空速(600000 ml/(g·s))条件下室温催化氧化甲醛的活性和稳定性影响.结果表明,在室温、高空速且相对湿度为50%的条件下,Au/Al_2O_3催化剂的初活性最高,且较为稳定.Au/SiO_2和Au/HZSM-5催化剂的初活性虽然较高,但很快失活.而还原性氧化物载体(CeO_2,FeO_x)负载的金催化剂初活性较低,但是稳定性较好.通过电镜对负载金催化剂表面Au粒子大小的表征,并将粒子尺寸与负载金催化剂室温氧化甲醛初活性相关联,它与催化氧化甲醛反应速率成线性关系.Au粒子尺寸较小的催化剂(Au/Al_2O_3和Au/SiO_2),在高空速条件下具有更高的氧化甲醛活性,而Au粒子尺寸较大的Au/Fe O_x催化剂活性较差.载体的氧化还原性质虽然不直接影响Au催化剂初活性,但直接影响催化剂稳定性.由于Au与SiO_2或HZSM-5载体的相互作用较弱,导致反应过程中Au粒子聚集长大,使其失活较快;而Au/Al_2O_3催化剂表面则富含羟基物种,能够与Au形成配体或产生锚定作用,因此反应过程中金粒子没有明显长大.而表面中间物种的沉积并覆盖活性位是负载金催化剂缓慢失活的主要原因.  相似文献   

4.
甲醛是致癌致畸物并具有较强的光化学活性.它既来源于纺织、农药、板材或其他精细化学品的生产过程,又来源于机动车尾气和室内各种装潢材料.为了人体健康和大气环境去除甲醛非常必要.用催化氧化法去除甲醛是一种很有前景的技术,但是该技术的关键是研究和发展催化剂.近年来,用于甲醛氧化的催化剂主要分为贵金属催化剂和过渡金属氧化物催化剂.贵金属催化剂是将Pt,Pd,Au,Ag等贵金属负载在不同类型的载体上而制得.载体可分为常见载体、传统金属氧化物载体和特殊形貌金属氧化物载体.常见载体是具有较大比表面积的SiO_2,Al_2O_3,TiO_2和分子筛等.这类载体有利于活性位的暴露以及反应物和产物的吸附和扩散,而且还能增强载体和活性组分的协同作用.负载在常见载体上的不同贵金属催化剂,其甲醛氧化活性从强到弱排列是:PtPdRhAuAg.用这种载体制备的催化剂具有很出色的应用前景.比如Na-Pt/TiO_2是甲醛氧化活性最好的催化剂,目前己被应用在空气净化器中,其次是Pt/TiO_2和Pd/TiO_2.传统金属氧化物载体主要是采用沉淀法、共沉淀法制备的CeO_2,Fe_2O_3,Co_3O_4,MnO_2及其复合氧化物,这类载体负载Pt的催化剂仍然具有出色的室温催化性能,如Pt/MnO_x-CeO_2和Pt/Fe_2O_3等.虽然Pt负载型催化剂应用前景很好,但是其成本较高,工业生产和普及受到限制.用传统金属氧化物载体制备的催化剂如Au/CeO_2,Ag/MnO_x-CeO_2和Ag/CeO_2等同样具有良好的发展前景.对于提高甲醛氧化活性来说,载体的选择至关重要.未来研究趋势可能是甲醛氧化负载型催化剂更多的会选择Ag或Au作为活性组分,而一些有潜力的传统金属氧化物载体将被使用不同的制备方法进一步改良.目前,拥有棒状、球状、孔状等特殊形貌的金属氧化物载体因为它们本身的催化活性要优于用沉淀法制备的传统金属氧化物催化剂,因此,将Ag或Au负载在这类载体上制备的催化剂具有更好的应用前景,如三维(3D)有序大孔Au/CeO_2-Co_3O_4,二维有序介孔Au/Co_3O_4-CeO_2和Au/Co_3O_4以及三维有序介孔K-Ag/Co_3O_4等.过渡金属氧化物催化剂,因成本低,资源丰富而受到关注.单一过渡金属氧化物催化剂如锰钾矿型的MnO_2纳米棒或纳米球,介孔MnO_2,Co_3O_4和Cr_2O_3等,具有较好的甲醛氧化催化活性(T_(50)和T_(100)分别小于等于110和140℃).另外,Ce,Sn,Cu和Zr等元素常常被掺杂到MnO_x和Co_3O_4中,制备成复合金属氧化物催化剂,MnO_x-CeO_2具有较好的甲醛催化活性(T_(50)100℃),因为MnO_x和CeO_2较强的相互作用改变了表面活性氧和活性相的数量.目前,复合金属氧化物催化剂氧化甲醛的报道很少.随着制备方法的改变,单一过渡金属氧化物或他们的复合氧化物催化剂可能会成为贵金属催化剂的替代品.目前,如何获得高效、低成本、低温甚至常温去除甲醛的催化剂仍然是一项重要的挑战.特殊形貌的金属氧化物催化剂如3D-Cr_2O_3,3D-Co_3O_4,MnO_2纳米球和纳米棒,在常温下完全转化甲醛仍然是个难以越过的鸿沟.将来,多种形貌的新型纳米金属氧化物及其Au或Ag负载型催化剂的制备和发展会成为一个研究趋势.这种催化剂既能被用于甲醛的催化氧化,也能被用于苯系物或其他VOCs的催化氧化.它能为机动车尾气和工业生产中VOCs产生量的削减提供技术支撑,而VOCs的去除有益于PM2.5浓度的降低和空气质量的恢复.  相似文献   

5.
采用不同的沉积法制备了氧化铌(Nb_2O_5)负载的金纳米粒子催化剂,即沉积-沉淀(DP)法、尿素辅助的DP法、沉积-还原(DR)法和一步法制备了1 wt%Au/Nb_2O_5催化剂.在众多类型Nb_2O_5(包括商业Nb_2O_5)中,采用水热法制备的层间型Nb_2O_5(Nb_2O_5(HT))最适合用作载体.结果表明,较大比表面积的Nb_2O_5(HT)使得金以纳米颗粒形式分散于其上.在优化的条件下,以DP和DR法沉积于Nb_2O_5(HT)上的金纳米粒子平均粒径为5 nm.采用DR法制备的Au/Nb_2O_5(HT)催化剂上CO转化率为50%时的温度为73 oC.不沉积金的条件下,即使在250 oC,Nb_2O_5(HT)对CO氧化反应也没有催化活性.因此,金的沉积对活性的促进作用非常明显.该简易Au/Nb_2O_5催化剂将金催化剂的类型扩展到酸性载体,这将增加新的应用.  相似文献   

6.
氧化物负载的金催化剂具有温和条件下优异的CO催化氧化活性。实验与理论计算表明,金与氧化物两相界面在催化反应过程中具有重要地位。反相催化剂提供了全新的角度以探究界面的重要地位。本文以Au(111)表面负载Al_2O_3团簇为反相催化剂模型,基于密度泛函理论,对催化剂模型的构型、界面性质以及O_2、CO的吸附与氧化进行了理论计算与研究。理论计算表明:电荷的迁移增强了Al_2O_3小团簇在Au(111)表面的附着,在催化剂金表面与氧化铝的两相界面位置,Au原子与Al原子的协同作用使得氧分子易于在界面位置吸附,并因此高度活化。对催化CO氧化反应路径,分别计算了缔合机理和解离机理不同路径,从活化能分析表明缔合机理比解离机理更可能发生。本文的工作揭示了反相催化剂催化CO氧化的活性本质,表明两相界面在金催化CO氧化中具有重要作用。  相似文献   

7.
自上世纪八十年代在多相催化研究领域兴起纳米金催化淘金热以来,负载型纳米金催化剂的优越性和局限性都得到了广泛的研究.负载型纳米金催化剂活性强烈依赖于其晶粒尺寸和载体性质,一般认为,金纳米颗粒只有在一定的尺寸范围(2-5 nm)且负载在"活性"载体表面才能发挥出其优异的催化活性.然而,小尺寸纳米金颗粒热稳定性差的弱点阻碍了其工业化应用的进程.因此,如何实现小尺寸金纳米颗粒的高温稳定以及构筑金与"活性"载体间有效的接触界面是发挥纳米金优异催化性能的关键.我们曾利用MgGa_2O_4尖晶石载体与金纳米颗粒形成金属-氧化物"异质孪晶"结构,从而实现了将~3 nm的金颗粒稳定在块体金的熔点(1064°C)以上,为小尺寸纳米金的高温稳定提供了新的思路.但MgGa_2O_4尖晶石是一种非氧化还原性载体,对水分子或氧气分子的辅助活化作用较弱,因而限制了具有优异高温抗烧结性能的Au?MgGa_2O_4催化剂在水汽变换和催化燃烧反应中的应用.本文采用等体积浸渍法在高温800°C焙烧5 h后的Au?MgGa_2O_4-800℃-5h样品上进行CeO_2助剂的修饰,以提高其对水分子和氧气分子的活化能力.利用STEM, XRD和EDS-Mapping表征对CeO_2/[Au?MgGa_2O_4-800°C-5h]样品进行结构分析,发现该样品中纳米Au具有优异的高温抗烧结性能, 800°C焙烧5 h并经CeO_2修饰后其颗粒尺寸仍保持在3.1 nm左右,样品中CeO_2的晶粒尺寸约为6 nm,且Au纳米颗粒与CeO_2助剂间形成了有效的接触界面.利用H_2-TPR和XPS表征对该样品的氧化还原性能及电子性质进行分析,发现CeO_2/[Au?MgGa_2O_4-800°C-5h]样品中CeO_2的还原温度相比于CeO_2/MgGa_2O_4对比样品显著降低, XPS结果显示CeO_2添加后Au的化学价态由金属态变为氧化态,表明Au与CeO_2助剂间具有显著的电子转移.同时, CeO_2的添加显著提高了800°C老化后Au?MgGa_2O_4催化水汽变换(CO转化率由~1.5%升到~34.0%, 450°C)、甲烷燃烧(T50降低80°C)和CO氧化(T50降低100°C)等反应活性.为理解CeO_2对Au?MgGa_2O_4的催化性能促进机制,我们选取水汽变换反应为例,利用DRIFTs表征发现CeO_2促进了反应物H_2O的活化,并结合小尺寸Au对CO的活化能力,从而使水汽变换反应顺利进行.本文在MgGa_2O_4尖晶石稳定纳米金的基础上,利用具有优异氧传输性能的CeO_2作为助剂,提高了该催化剂对水分子和氧气分子的活化能力,从而获得了对水汽变换反应和催化燃烧反应具有高稳定性和高活性的CeO_2/[Au?MgGa_2O_4]催化剂.这种"先稳定-后活化"的催化剂设计思路也为今后高稳定性、高催化活性的纳米金催化剂的设计和制备提供了借鉴.  相似文献   

8.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe2O3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe2O3(S))相比,氧化铁纳米棒(α-Fe2O3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe2O3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明,Au/α-Fe2O3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现,Au/α-Fe2O3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe2O3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明,Au/α-Fe2O3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

9.
讨论了金属氧化物载体(MO_x)对其负载纳米金催化剂(Au/MO_x)上CO氧化反应的影响.采用典型的共沉淀法和沉积-沉淀法在完全相同的焙烧条件下制备了一系列MO_x负载金催化剂,以CO氧化转化50%时的反应温度(T_(1/2))定量评价了MO_x载体和Au/MO_x催化剂的催化活性.进一步将MO_x载体与相应Au/MO_x催化剂的T_(1/2)值之差对MO_x载体的金属-氧结合能做曲线进行关联,发现二者呈明显的火山型关系.这一结果表明,采用具有适当金属-氧结合能(300–500 atom O)的MO_x可大大提高沉积于其上的Au纳米颗粒的催化活性.  相似文献   

10.
与汽油发动机相比,柴油发动机具有热效率高、CO_2排放低、寿命长、续航距离远和经济性好等优点,可大大缓解能源短缺,降低CO_2排放量.因此,机动车柴油化是当前发展趋势.然而,柴油发动机在使用过程中会排放大量炭烟颗粒物,对人体危害极大.因此,控制炭烟颗粒排放成为环境催化研究的重点之一.炭烟颗粒物催化燃烧反应是典型的固(炭烟颗粒)-固(催化剂)-气(O_2)多相催化反应.三维有序大孔氧化物(3DOM)具有大孔径和内部贯通的孔道结构,能有效提高炭烟颗粒与催化活性中心的接触性能.同时,纳米Au颗粒在大孔氧化物表面的负载可有效提高催化剂本征活性,但纳米Au颗粒催化剂热稳定性较差.CeO_2具有较好的储放氧性能,可与贵金属活性组分发生相互作用,从而提高贵金属纳米颗粒的分散度和稳定性.因此,本文从柴油炭烟颗粒物催化燃烧反应本质出发,设计制备了高炭烟燃烧催化活性的3DOM氧化物担载Au基催化剂,研究了Au与CeO_2强相互作用对炭烟燃烧活性的影响.采用胶体晶体模板法制备3DOM Al_2O_3载体,由微孔膜氨沉淀法制备CeO 2/3DOM Al_2O_3催化剂,以还原-沉积法制备Au/3DOM Al_2O_3和Au/CeO_2/3DOM Al_2O_3催化剂,并利用扫描电镜、N_2物理吸附-脱附、X射线衍射、透射电镜、紫外漫反射光谱、H_2程序升温还原和X射线光电子能谱等手段对催化剂形貌、比表面积、物理化学性质和氧化还原性进行了表征.结果表明,在CeO_2/3DOM Al_2O_3中,Al~(3+)可进入到氧化铈晶格内,形成Al-Ce-O固溶体,产生氧空位,这有利于氧物种转移.此外,Au/CeO_2/3DOM Al_2O_3催化剂中Au和CeO_2之间的强相互作用能增加Au纳米颗粒表面活性氧物种数量,从而促进柴油炭烟燃烧反应.纳米颗粒Au的担载使得催化柴油炭烟燃烧的起燃温度明显降低,其中Au/CeO_2/3DOM Al_2O_3催化剂表现出最高的催化活性,T_(10),T_(50)和T_(90)分别为273,364和412 ℃.  相似文献   

11.
与硫氧化物、氮氧化物、一氧化碳以及悬浮颗粒一样,大部分挥发性有机物(VOCs)污染大气环境.控制VOCs排放有多种方法,其中催化氧化法是一种有效技术,关键在于获得高效催化剂.近年来,负载过渡金属和贵金属催化剂因具有比单纯负载贵金属和单纯负载过渡金属氧化物更好的催化性能而备受关注.在负载贵金属催化剂中,高比表面积载体负载Pt,Pd或Rh催化剂得到广泛而深入的研究,尽管这些催化剂成本较高,但是其对VOCs氧化反应显示了很高的低温催化活性.众所周知,催化活性取决于贵金属和VOCs的种类,不同负载贵金属催化剂对特定反应会表现出不同的催化活性.负载Pt催化剂对长链碳氢化合物和芳香族化合物氧化反应表现出更高的活性.相对于负载贵金属催化剂,负载过渡金属氧化物催化剂不仅具有良好的氧化活性,而且价格低廉.迄今已发现许多过渡金属氧化物(如Co_3O_4,Cr_2O_3和MnO_2等)对典型VOCs氧化反应具有催化活性,其中Co_3O_4的催化活性尤为突出.研究表明,Co_3O_4的性质和分散度是决定其性能的关键因素,制备方法、载体性质和过渡金属氧化物负载量对Co_3O_4的物化性质具有重要影响,而且在负载Pt催化剂中添加金属氧化物能改善其催化性能.尽管多孔氧化铝是一种常用的载体材料,但目前尚无文献报道三维有序大孔-介孔氧化铝负载Co_3O_4和Pt纳米粒子催化剂的制备及其对甲苯氧化反应的催化性能.本文采用聚甲基丙烯酸甲酯微球胶晶模板法、等体积浸渍法和聚乙烯醇保护的硼氢化钠还原法制备了三维有序大孔-介孔(3DOM Al_2O_3)负载Co_3O_4和Pt(xP t/yCo_3O_4/3DOM Al_2O_3,Pt的质量分数(x%)为0-1.4%,Co_3O_4的质量分数(y%)为0-9.2%)纳米催化剂.通过电感耦合等离子体原子发射光谱、X射线衍射、氮气吸附-脱附、扫描电子显微镜、透射电子显微镜、选区电子衍射、X射线光电子能谱及氢气程序升温还原等技术表征了催化剂的物化性质,利用固定床微型石英反应器评价了催化剂对甲苯氧化反应的催化活性.结果表明,xP t/yC o3O4/3DOM Al_2O_3催化剂具有多级孔结构(大孔孔径为180–200 nm,介孔孔径为4–6 nm),比表面积为94-102 m2/g.粒径为18.3 nm的Co_3O_4纳米粒子和粒径为2.3-2.5 nm的Pt纳米粒子均匀分散在3DOM Al_2O_3表面.在xP t/y Co_3O_4/3DOM Al_2O_3催化剂中,1.3Pt/8.9Co_3O_4/3DOM Al_2O_3拥有最高的Oads浓度、最好的低温还原性和最高的甲苯氧化反应催化活性(当空速为20000 mL g~(-1) h~(-1)时,甲苯转化率达90%的反应温度为160 oC).基于催化剂的活性数据和结构表征,我们认为,1.3Pt/8.9Co_3O_4/3DOM Al_2O_3优异的催化性能与其高分散的Pt纳米粒子、高的Oads浓度、好的低温还原性、Pt和Co_3O_4纳米粒子间的强相互作用以及多级孔结构相关.  相似文献   

12.
讨论了金属氧化物载体(MOx)对其负载纳米金催化剂(Au/MOx)上CO氧化反应的影响。采用典型的共沉淀法和沉积-沉淀法在完全相同的焙烧条件下制备了一系列MOx负载金催化剂,以CO氧化转化50%时的反应温度(T1/2)定量评价了MOx载体和Au/MOx催化剂的催化活性。进一步将MOx载体与相应Au/MOx催化剂的T1/2值之差对MOx载体的金属-氧结合能做曲线进行关联,发现二者呈明显的火山型关系。这一结果表明,采用具有适当金属-氧结合能(300–500 atom O)的MOx可大大提高沉积于其上的Au纳米颗粒的催化活性。  相似文献   

13.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的VOCs治理技术,因此研发新型高效VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co_3O_4,MnO_2,Fe_2O_3,Cr_2O_3和LaFeO_3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co_3O_4,Au/MnO_2和Pd/Co_3O_4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe_2O_3,LaMnO_3,La_(0.6)Sr_(0.4)MnO_3和La_2CuO_4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co_3O_4,Au/LaCoO_3,Au/La_(0.6)Sr_(0.4)MnO_3和AuPd/Co_3O_4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高VOCs的消除效率.  相似文献   

14.
将胶体金负载于不同的金属氧化物纳米材料上,分别制备了Au/TiO2、Au/γ-Al2O3、Au/Fe2O3和Au/ZnO纳米材料,采用透射电子显微镜(TEM)对负载前后的材料进行了表征。利用气相色谱法检测CO的浓度,在选定的色谱条件下,5 min内就实现了快速分离测定,该检测方法的线性范围为1.0×10-6%~10%(体积分数),回收率为96.0%~103.6%,精密度为1.2%~2.3%。应用自制的催化活性评价装置对氧化物纳米材料催化氧化CO的行为进行了研究,结果表明:负载金氧化物纳米材料催化氧化CO的性能在50~200℃均优于相应的未负载金的材料,其中Au/TiO2的催化氧化效果最佳,且在一定气体流速范围内具有稳定的催化活性。  相似文献   

15.
甲醛是一种常见的室内空气污染物,人们针对其消除已经做了大量的研究工作.催化氧化法是脱除挥发性有机物的一种重要方法,能在较低温度下通过催化剂作用将甲醛完全氧化为无毒的CO2和H2O.所用催化剂主要为负载型贵金属催
  化剂和非贵金属催化剂,但只有担载贵金属Pt或Pd的催化剂可在室温下将甲醛完全氧化,而非贵金属一般则需要较高的温度. Au催化剂是近年来催化领域的一个研究热点,但是关于纳米Au催化剂室温消除甲醛的研究较少.本课题组前期研究发现,以可还原性氧化物(CeO2, FeOx)为载体负载的Au催化剂具有优异的室温氧化甲醛活性;并且突破以可还原性载体负载金的传统思路,首次发现“惰性载体”γ-Al2O3,负载的金催化剂在室温、有水条件下具有优异的甲醛氧化活性.本文对比了还原性氧化物(CeO2, FeOx)和非还原性氧化物(Al2O3, SiO2和HSZM-5)载体负载金催化剂,研究了载体氧化还原性质对负载金催化剂在高空速(600000 ml/(g·s))条件下室温催化氧化甲醛的活性和稳定性影响.结果表明,在室温、高空速且相对湿度为50%的条件下, Au/Al2O3催化剂的初活性最高,且较为稳定. Au/SiO2和Au/HZSM-5催化剂的初活性虽然较高,但很快失活.而还原性氧化物载体(CeO2, FeOx)负载的金催化剂初活性较低,但是稳定性较好.通过电镜对负载金催化剂表面Au粒子大小的表征,并将粒子尺寸与负载金催化剂室温氧化甲醛初活性相关联,它与催化氧化甲醛反应速率成线性关系. Au粒子尺寸较小的催化剂(Au/Al2O3和Au/SiO2),在高空速条件下具有更高的氧化甲醛活性,而Au粒子尺寸较大的Au/FeOx催化剂活性较差.载体的氧化还原性质虽然不直接影响Au催化剂初活性,但直接影响催化剂稳定性.由于Au与SiO2或HZSM-5载体的相互作用较弱,导致反应过程中Au粒子聚集长大,使其失活较快;而Au/Al2O3催化剂表面则富含羟基物种,能够与Au形成配体或产生锚定作用,因此反应过程中金粒子没有明显长大.而表面中间物种的沉积并覆盖活性位是负载金催化剂缓慢失活的主要原因.  相似文献   

16.
采用种子生长法,在不存在保护剂和结构导向剂的情况下,成功制备Pt@Au核壳结构纳米颗粒,即在Pt纳米颗粒表面,Au Cl~(4-)被H_2还原成Au(0),并沉积在Pt核纳米颗粒上。通过透射电子显微镜(TEM),能量色散X射线光谱(EDS),高分辨率TEM (HRTEM),傅里叶变换(FFT)和X射线粉末衍射(XRD),X射线光电子能谱(XPS),红外光谱(IR)和H_2-程序升温还原(H_2-TPR)等表征证实了核壳结构。所制得的Pt@Au_x/Al_2O_3催化剂在常压下由固定床反应器测定其在甲苯氧化中的活性。相比于单金属催化剂Pt/Al_2O_3与Au/Al_2O_3,Pt@Au_x/Al_2O_3核壳催化剂显示出更高的催化活性,且Pt_1@Au_1/Al_2O_3对于甲苯氧化具有最好的催化活性,这归因于Au和Pt之间的电子交换促进了Au上活性氧的形成。Pt@Au_x/Al_2O_3对甲苯氧化良好的催化性能和高选择性与其较高的吸附氧物质浓度,较好的低温还原性和强相互作用有关。  相似文献   

17.
 采用沉积沉淀法,将金负载在复合氧化物载体MOx/Al2O3上,制备得到了Au/MOx/Al2O3催化剂的活性要高于Au/Al2O3催化剂。Au/FeOx/Al2O3催化剂能够在低于223K的温度下实现CO完全催化氧化。TEM图象分析表明,纳米级高分散的金颗粒是金催化剂高活性的前提,但载体的选择,以及复合氧化物载体中过渡金属氧化物的选择,也会对金催化剂的活性产生明显的影响。  相似文献   

18.
甲醛催化氧化催化剂的研究进展   总被引:5,自引:0,他引:5  
甲醛是致癌致畸物并具有较强的光化学活性.它既来源于纺织、农药、板材或其他精细化学品的生产过程,又来源于机动车尾气和室内各种装潢材料.为了人体健康和大气环境去除甲醛非常必要.用催化氧化法去除甲醛是一种很有前景的技术,但是该技术的关键是研究和发展催化剂.近年来,用于甲醛氧化的催化剂主要分为贵金属催化剂和过渡金属氧化物催化剂.贵金属催化剂是将Pt,Pd,Au,Ag等贵金属负载在不同类型的载体上而制得.载体可分为常见载体、传统金属氧化物载体和特殊形貌金属氧化物载体.常见载体是具有较大比表面积的SiO2,Al2O3,TiO2和分子筛等.这类载体有利于活性位的暴露以及反应物和产物的吸附和扩散,而且还能增强载体和活性组分的协同作用.负载在常见载体上的不同贵金属催化剂,其甲醛氧化活性从强到弱排列是:Pt> Pd> Rh >Au> Ag.用这种载体制备的催化剂具有很出色的应用前景.比如Na-Pt/TiO2是甲醛氧化活性最好的催化剂,目前己被应用在空气净化器中,其次是Pt/TiO2和Pd/TiO2.传统金属氧化物载体主要是采用沉淀法、共沉淀法制备的CeO2,Fe2O3,Co3O4,MnO2及其复合氧化物,这类载体负载Pt的催化剂仍然具有出色的室温催化性能,如Pt/MnOx-CeO2和Pt/Fe2O3等.虽然Pt负载型催化剂应用前景很好,但是其成本较高,工业生产和普及受到限制.用传统金属氧化物载体制备的催化剂如Au/CeO2,Ag/MnOx-CeO2和Ag/CeO2等同样具有良好的发展前景.对于提高甲醛氧化活性来说,载体的选择至关重要.未来研究趋势可能是甲醛氧化负载型催化剂更多的会选择Ag或Au作为活性组分,而一些有潜力的传统金属氧化物载体将被使用不同的制备方法进一步改良.目前,拥有棒状、球状、孔状等特殊形貌的金属氧化物载体因为它们本身的催化活性要优于用沉淀法制备的传统金属氧化物催化剂,因此,将Ag或Au负载在这类载体上制备的催化剂具有更好的应用前景,如三维(3D)有序大孔Au/CeO2-Co3O4,二维有序介孔Au/Co3O4-CeO2和Au/Co3O4以及三维有序介孔K-Ag/Co3O4等.过渡金属氧化物催化剂,因成本低,资源丰富而受到关注.单一过渡金属氧化物催化剂如锰钾矿型的MnO2纳米棒或纳米球,介孔MnO2,Co3O4和Cr2O3等,具有较好的甲醛氧化催化活性(T50和T100分别小于等于1 10和140℃).另外,Ce,Sn,Cu和Zr等元素常常被掺杂到MnOx和Co3O4中,制备成复合金属氧化物催化剂,MnOx-CeO2具有较好的甲醛催化活性(T50<100℃),因为MnOx和CeO2较强的相互作用改变了表面活性氧和活性相的数量.目前,复合金属氧化物催化剂氧化甲醛的报道很少.随着制备方法的改变,单一过渡金属氧化物或他们的复合氧化物催化剂可能会成为贵金属催化剂的替代品.目前,如何获得高效、低成本、低温甚至常温去除甲醛的催化剂仍然是一项重要的挑战.特殊形貌的金属氧化物催化剂如3D-Cr2O3,3D-Co3O4,MnO2纳米球和纳米棒,在常温下完全转化甲醛仍然是个难以越过的鸿沟.将来,多种形貌的新型纳米金属氧化物及其Au或Ag负载型催化剂的制备和发展会成为一个研究趋势.这种催化剂既能被用于甲醛的催化氧化,也能被用于苯系物或其他VOCs的催化氧化.它能为机动车尾气和工业生产中VOCs产生量的削减提供技术支撑,而VOCs的去除有益于PM2.5浓度的降低和空气质量的恢复.  相似文献   

19.
采用浸渍法在高比表面积的SiO2上负载不同量的CeO2,得到了CeO2不同颗粒尺寸的CeO2-SiO2载体,并用沉积沉淀法制备了CeO2-SiO2负载的纳米金催化剂.通过元素分析、X射线衍射、程序升温还原、N2物理吸附、拉曼光谱和透射电镜等技术对催化剂进行了表征,并考察了催化甲醛氧化活性.结果表明,高分散度、小尺寸的CeO2有利于得到较小尺寸的Au颗粒,并增强了催化剂的还原能力和氧缺位浓度,从而有利于提高催化剂低温甲醛催化氧化活性.  相似文献   

20.
在分子尺度上介绍了Au/TiO_2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H_2O的作用.在低温(320 K),H_2O起着促进CO氧化的作用,CO氧化的活性位位于金纳米颗粒与TiO_2载体界面(Au~(δ+)O~(δ–)––Ti)的周边.O_2和H_2O在金纳米颗粒与Ti O_2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO_2.300K时CO_2的形成速率受限于O_2压力与该反应机理相印证.相反,在高温(320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O_2,随后O_2解离,并在金属金表面氧化CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号