首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work is focused on the effect of heat and mass transfer with unsteady natural convection flow of viscous fluid along with ramped wall temperature under the assumption of the slip wall condition at the boundary. Analytical solutions are obtained by using Laplace transformation to the non-dimensional set of governing equations containing velocity, temperature and concentration. Moreover, the expression for skin-friction is derived by differentiating the analytical solutions of fluid velocity. Numerical tables for Skin-friction, Sherwood number and Nusselt-number are examined. For the physical aspects of the flow, we use various values of involved physical parameters such as Prandtl number (Pr), slip parameter ($\eta$), Schmidt number (Sc), buoyancy ratio parameter ($N$), Sherwood number (Sh), and time $(t)$. Additionally, the general solutions are plotted graphically and a comprehensive theoretical section of numerical discussions is included.  相似文献   

2.
采用格子Boltzmann方法数值模拟化学反应中混溶流体在微通道中的粘性指进现象.模拟采用单浓度变量的双稳态化学反应模型,重点研究指进的形态位置随化学反应速率和稳态浓度参数(即无化学反应发生的界面浓度)的变化.结果表明:随着反应速率的增加,指进界面变薄;而稳态浓度参数的变化则影响反应区的分布以及反应速率,导致指进形态以及位置的改变,甚至出现指尖液滴分离.  相似文献   

3.
The present paper addresses the megnetohydrodynamic Jeffrey fluid flow with heat and mass transfer on an infinitely rotating upright cone. Inquiry is carried out with heat source/sink and chemical reaction effects. Further, constant thermal and concentration flux situations are imposed. Optimal homotopy analysis method (OHAM) is employed to achieve series solutions of the concerned differential equations. Important results of the flow phenomena are explored and deliberated by means of graphs and numerical tables. It is perceived that thermal boundary layer thickness possess contrast variations for the heat source and heat sink, respectively. The chemical reaction enhances the heat transfer rate but decline the mass transfer rate. Moreover, the precision of the existing findings is verified by associating them with the previously available work.  相似文献   

4.
Unsteady mixed convective boundary layer flow and heat transfer over a stretching vertical surface in the presence of slip axe investigated. It is noted that fluid velocity decreases due to the increasing velocity slip parameter resulting in an increase in the temperature field. The rate of heat transfer decreases with the velocity slip parameter while it increases with unsteadiness parameter. The same feature is also noticed for thermal slip parameter.  相似文献   

5.
In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic(MHD) flow and heat transfer of an incompressible generalized Burgers' fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers' fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm,whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ_1 and retardation time λ_3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness.  相似文献   

6.
7.
This paper is focused on the study of the viscous Powell-Eyring liquid thin film flow and heat transfer driven by an unsteady stretching sheet in the presence of slip velocity and non-uniform heat generation. A system of equations for momentum and thermal energy are reduced to a set of coupled non-linear ordinary differential equations with the aid of dimensionless transformation. The resulting seven-parameter problem has been solved numerically by using an efficient shooting technique coupled with the fourth-order Runge-Kutta algorithm over the entire range of physical parameters. To interpret various physical parameters governing the flow and heat transfer which appear in the momentum and energy equations, the results are presented graphically. The present results are compared with some of the earlier published work in some limiting cases and are found to be in an excellent agreement. This favorable comparison lends confidence in the numerical results to be reported in the present work. Furthermore, the effects of the parameters governing the thin film flow and heat transfer are examined and discussed through graphs and tables. Also, the values of the local skin-friction coefficient and the local Nusselt number for different values of physical parameters are presented through tables. Additionally, the obtained results for some particular cases of the present problem appear in good agreement with the literature review.  相似文献   

8.
利用格子Boltzmann方法和GPU计算技术,在孔隙尺度上模拟多孔介质中包含界面化学反应的粘性指进现象,定量分析化学反应对流体混合的影响.采用单浓度变量的双稳态模型来描述界面反应,而各向同性的多孔介质则通过四参数法生成.研究发现化学反应能减小指进界面厚度,抑制流体的混合,甚至会出现反混合现象,并且随着反应速率的增加,影响越明显.  相似文献   

9.
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.  相似文献   

10.
Boundary layer stagnation point flow of Casson fluid over a Riga plate of variable thickness is investigated in present article. Riga plate is an electromagnetic actuator consists of enduring magnets and gyrated aligned array of alternating electrodes mounted on a plane surface. Physical problem is modeled and simplified under appropriate transformations. Effects of thermal radiation and viscous dissipation are incorporated. These differential equations are solved by Keller Box Scheme using MATLAB. Comparison is given with shooting techniques along with RangeKutta Fehlberg method of order 5. Graphical and tabulated analysis is drawn. The results reveal that Eckert number,radiation and fluid parameters enhance temperature whereas they contribute in lowering rate of heat transfer. The numerical outcomes of present analysis depicts that Keller Box Method is capable and consistent to solve proposed nonlinear problem with high accuracy.  相似文献   

11.
We study the effects of viscous dissipation on flow and heat transfer in a thin liquid film on an unsteady stretching sheet. A general surface temperature is taken into consideration. The velocity and temperature fields are solved using the homotopy analysis method. The results show that the increasing values of the Eckert number can increase temperature distribution and the heat transfer rate.  相似文献   

12.
本文对自制微管换热器的流动与传热性能进行了实验研究。提出了微细圆管换热器管内单相强制对流换热努摩尔数准则式,并与已有相关文献提出的关联式做了对比,结果表明:微管管内换热系数比常规尺度计算公式预测值要高,同时本文分析了微细管内的压力降、摩擦阻力系数f随雷诺数的关系。研究表明微管管内压降、摩擦系数都比常规尺度预测值要高。  相似文献   

13.
为研究肿瘤磁流体热疗过程中温度梯度与浓度梯度间的耦合效应对磁微粒的弥散及肿瘤内传热的影响,本文根据非平衡热力学唯象定律建立了包含浓度场及温度场的耦合传热传质模型,以常数形式的热扩散系数表征温度梯度对传质过程的影响程度。通过有限元法求解,得到考虑双场耦合作用时肿瘤内的浓度分布和温度分布。模拟结果表明,与不考虑耦合效应的情...  相似文献   

14.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible third grade fluid bounded by an infinite porous plate is studied with the Hall effect. An external uniform magnetic field is applied perpendicular to the plate and the fluid motion is subjected to a uniform suction and injection. Similarity transformations are employed to reduce the non-linear equations governing the flow under discussion to two ordinary differential equations (with and without dispersion terms). Using the finite difference scheme, numerical solutions represented by graphs with reference to the various involved parameters of interest are discussed and appropriate conclusions are drawn.  相似文献   

15.
脱氧核糖核酸与刚果红化学反应的机理研究   总被引:3,自引:2,他引:1  
采用UV-Vis光谱法,研究了在pH 4.56的Tris缓冲溶液中脱氧核糖核酸(DNA)与刚果红(GGH)相互作用。生成的紫色配合物最大吸光度差ΔA在600 nm,反应前后吸收光谱变化明显,反应体系对比度好。在此波长下测得配合物的表观摩尔吸光系数ε=1.41×105 L·cm-1·mol-1,最大结合数n=32,最低检出限为c=8.04×10-8 mol·L-1 等。研究了体系的酸度、温度、时间等基本反应条件,以及不同类型物质对反应体系的干扰状况。离子强度的改变对体系的吸光度有一定影响。探讨了小分子物质与DNA作用的方式及二者的分子结构、分子构象及电子云分布之间的关系。  相似文献   

16.
Ageev  A. I.  Osiptsov  A. N. 《Doklady Physics》2020,65(7):242-245
Doklady Physics - For the first time, the effect of pressure fluctuations on the averaged shear stress in a shear viscous flow over a two-dimensional rectangular microcavity containing a pulsating...  相似文献   

17.
18.
This article scrutinizes the features of viscous dissipation in the stagnation point flow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat flux model. Viscous dissipation is carried out in Cattaneo-Christov diffusion analysis for the first time in this letter. As a result of Cattaneo-Christov model, some extra terms of viscous dissipation are appeared in the energy equation. These extra terms of viscous dissipation are missing in the literature. On the utilization of suitable transformations, the equations governing the problem are reduced under the boundary layer approximation into the non-linear and dimensionless ordinary differential equations. Convergent approach is utilized to solve the dimensionless governing equations. The solution thus acquired is used to highlight the effects of emerging parameters on velocity distribution and fluid's temperature through the graphs. Features of the drag force (or skin friction co-efficient) are graphically interpreted. It is noticed that the presence of modified Hartman number helps to reduce the fluid's temperature but enhances the velocity profile. Further an enlargement in the value of thermal time relaxation parameter helps to decrease the temperature distribution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号