首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO2进一步转化为溶解度高的N2O5,传统脱硫石膏浆液即可实现高效吸收N2O5,从而有效提高氮氧化物吸收效率.但由于N2O5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70oC下,O3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N2O5生成的总包反应(2NO+3O3=N2O5+3O2)可以看出,O3/NO摩尔比为1.5时即可实现N2O5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m3,反应温度100oC,O3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO2的浓度分别低于20 mg/m3(Fe-Mn)和50 mg/m3(Ce-Mn),臭氧残留浓度低于25 mg/m3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N2O5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NOx<50 mg/m3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn4+和Mn3+的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N2O5生成效率.  相似文献   

2.
商业选择性催化还原(SCR)催化剂成分主要有V_2O_5,WO_3和TiO_2,但适用温度窗口较窄(300-400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯TiO_2和ZrO_2载体,TiO_2-ZrO_2具有较高的热稳定性以及较多的酸位,虽然有关TiO_2-ZrO_2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对NH_3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同NH_3-SCR脱硝催化剂的起活温度不同.同时,NH_3和NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究NH_3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的TiO_2-ZrO_2固溶体,并分步浸渍不同质量比的WO_3和1%V_2O_5,最终得到一系列1%V_2O_5-x%WO_3/TiO_2-ZrO_2.然后通过X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了WO_3和ZrO_2对催化性能的影响以及V_2O_5-WO_3/TiO_2-ZrO_2催化剂的反应机理.N2物理吸附结果表明,WO_3的添加使得催化剂孔结构的热稳定性有所提高,同时随着WO_3含量增加催化剂的比表面积逐渐减小,但仍高于V_2O_5/TiO_2-ZrO_2催化剂;ZrO_2对催化剂比表面积增大效果比较明显.结合XRD结果表明,WO_3能促进金属氧化物在载体上的分散;相比于V_2O_5-WO_3/TiO_2催化剂,ZrO_2有利于活性组分的分散负载.比较系列V_2O_5-x%WO_3/TiO_2-ZrO_2的氨吸附情况,发现WO_3的添加增加了Br?nsted酸的稳定性,其中以9%WO_3的效果最显著.催化剂氨吸附中间物种(–NH_2)的发现,证实了WO_3添加促进了NH_3的活化,有利于脱硝反应的进行.SCR反应结果显示,V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂在300–450 ℃时NO_x转化效率最优,并发现O_2的存在促进了NO_x的转化.采用in situ DRIFTS研究了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂脱硝机理,300和350 ℃时NH_3,NO,NO+O_2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为Lewis酸中心,Br?nsted酸中心的NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与NH_3相比,NO只能以NO_2的形式弱吸附在催化剂表面.因此,该催化剂遵循Eley-Ridel脱硝机理.而V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂具有相对较高的脱硝效率,因此用来着重研究NH_3-SCR机理.在NH_3吸附过程中,NH_3(1204,1602,3156,3264,3347 cm~(-1))和活性中产物NH_2(1550 cm~(-1))在催化剂表面的吸附(恒温300 ℃)是稳定的;随后通入NO+O2时,NH_3吸附过程中的所有吸收峰(包括NH_2)均逐渐减小(NH_3吸附态与NO结合后分解为N_2和H_2O),同时出现H_2O的振动峰,这证明了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂的脱硝反应过程.各类气体吸附情况表明,NO在商业催化剂的吸附状态与V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂相同;但NH_3吸附结果表明,Br?nsted酸中心和Lewis酸中心都是催化剂的活性中心;NO+O_2的通入使得催化剂表面的NH_3和NH~(4+)都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的NO_x脱除路径.通过in situ DRIFTS比较O_2的存在对脱硝反应产生的不同影响来确定O_2的作用.两类催化剂上O_2均参与了H_2O的形成,促进了催化反应的完成;当O_2不存在时,NO的还原受到了极大地抑制,同时也未出现H_2O;两者的脱硝效率大大降低.H_2-TPR和NH_3-TPR结果进一步证实O_2的作用主要是氧化NO及参与催化过程H_2O的形成.  相似文献   

3.
为实现低温(200-250℃) NH_3-SCR烟气脱硝,开发出了一种高分散暴露CeO_2不同晶面的VO_x-MnO_x/CeO_2低温脱硝催化剂。脱硝性能评价实验结果表明,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂在很宽的温度范围内(220-330℃)都保持了95%的脱硝效率。原位漫反射红外分析结果可知,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂表面更易发生NH_3和NO吸附,进而提高NO的转化效率。气态NH_3在VO_x-MnO_x/CeO_2-R催化剂上吸附生成NH_3(L)和NH_4~+(B),该中间体与NO吸附的中间体桥联硝酸盐和双齿硝酸盐反应生成N_2和H_2O,并遵循Langmuir-Hinshelwood机理。  相似文献   

4.
NOx是大气污染物的重要组成部分,能够造成酸雨、光化学烟雾和臭氧层破坏等一系列环境问题,严重危害人类健康.选择性催化还原(SCR)是控制NOx排放的主要技术,当前工业上普遍采用的是钒钛催化剂,然而该催化剂活性温度窗口较窄(300-400 ℃),N_2选择性较低,而且钒物种本身有毒.因此开发新型SCR催化剂成为研究热点.Fe/TiO_2催化剂具有稳定的化学性质,环境污染少且价格低廉,近年来受到广泛关注.为了提高Fe/TiO_2催化活性,人们采用了各种不同的制备方法.本文以F127作为结构导向剂,结合溶胶-凝胶法原位合成了具有介孔结构、工作温度在150-300 ℃的Fe/TiO_2脱硝催化剂,并与普通浸渍法和共沉淀法制备的催化剂进行了对比.利用N_2吸附脱附、紫外-可见光谱、X射线电子能谱、NH_3程序升温脱附和原位红外光谱等技术研究了制备方法对Fe/TiO_2催化剂物理结构及脱硝性能的影响.结果表明,相较于浸渍法和共沉淀法,模板法制备的催化剂具有较高的脱硝效率和抗H_2O和SO_2性能.作为结构导向剂,F127能够诱导催化剂形成均匀的介孔结构,有利于提高催化剂比表面积,促进反应物分子的扩散和转移,从而提高催化剂脱硝效率.进一步研究发现,模板法能够明显促进活性组分Fe物种的分散和NH_3吸附,载体与活性组分具有较强的相互作用,因而有利于催化剂产生较多的活性位.结合XPS结果,较多的活性位点有利于表面吸附氧(O_α)在催化剂表面的吸附.Oα有利于NO到NO_2的转化,从而促进快速SCR反应:NO+NO_2+2NH_3→2N_2+3H_2O.通过原位红外机理分析证明,吸附在模板法制备的催化剂表面的NO物种具有较强的稳定性,当温度超过200 ℃时,仍然保持一定的吸附强度;吸附NH_3红外结果表明,Lewis酸性位比Br?nsted酸性位具有更强的稳定性,当温度超过150℃仍然具有较强的Lewis酸吸附.催化剂表面稳定的NO物种和Lewis酸位上强的NH_3吸附是催化剂催化活性增加的重要原因.  相似文献   

5.
许多研究表明,MnO_x和g-C_3N_4均有催化氧化NO的活性,并且探索了它们各自的转化机理.然而,MnO_x/g-C_3N_4复合材料的光热催化机理仍然是一个未解决的问题.我们通过室温沉淀法直接合成不同摩尔比的MnO_x/g-C_3N_4,并发现其表现出良好的光热协同催化氧化NO的性能.MnO_x/g-C_3N_4催化剂在g-C_3N_4表面含有不同价态的MnOx.通过原位红外光谱在60°C下研究了紫外-可见光诱导的MnOx热催化NO的机理以及MnO_x/g-C_3N_4光热协同催化NO的机理.结果表明,光照对MnOx热催化NO的过程几乎没有影响,但对MnO_x/g-C_3N_4光热协同催化NO产生积极作用并且形成重要的催化循环机制.具体过程是光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+)),使活性氧空位再生.通过MnO_x(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).这将为开发更好的净化NO_x的催化剂提供重要的指导意义.XRD表征结果表明,MnO_x/g-C_3N_4复合催化剂的结晶度较低.TEM和XPS表征结果表明,g-C_3N_4表面含有多种低结晶度的MnO_x,主要含有MnO,MnO_2和Mn_2O_3.此外,通过对比MnO_x和1:5 MnO_x/g-C_3N_4催化净化NO的XPS结果,发现反应后的MnO_x含有大量Mn-Nitrate且Mn~(3+)和Mn~(4+)大幅度减少;同时,反应前后1:5 MnO_x/g-C_3N_4的Mn~(2+),Mn~(3+)和Mn~(4+)的含量变化微弱.BET-BJH测试结果显示,MnO_x/g-C_3N_4复合催化剂的比表面积和孔容均高于纯g-C3N4.UV-Vis DRS测试结果显示,MnO_x/g-C_3N_4复合催化剂显示了良好的可见光吸收能力.紫外-可见光催化去除NO的测试结果表明,1:5 MnO_x/g-C_3N_4(44%)的光催化活性明显高于MnO_x(28%)和g-C_3N_4(36%).ESR测试结果表明,参与反应的主要活性物种为?O_2~–自由基.EPR测试结果表明,1:5 MnO_x/g-C_3N_4的氧空位明显多于MnO_x,丰富的活性氧空位更有利于电子的迁移且促进Mnn+(n=2,3和4)的变价而诱导O2分子形成活性氧(O–).以上结果清晰地表明1:5 MnO_x/g-C_3N_4表现出不同的理化特性.可见光催化氧化NO的原位红外光谱表明,光照前后MnOx催化氧化NO的过程没有明显的变化,表明其属于典型的热催化过程,综合上述表征结果发现MnOx的氧缺陷是Mnn+(n=3和4)变价的活性位点,可诱导O_2产生活性氧催化氧化NO为硝酸盐吸附在MnO_x上;光照前后1:5 MnO_x/g-C_3N_4催化氧化NO的过程有明显不同,光照前主要表现为g-C_3N_4表面MnO_x的热催化过程,而光照后1:5 MnO_x/g-C_3N_4为光热协同催化NO的过程.具体过程是g-C_3N_4的光生电子(e~–)转移到MnO_x上参与光热协同的还原循环(Mn~(4+)→Mn~(3+)→Mn~(2+)),且低价Mn离子易给出电子(e~–)与光生空穴(h~+)相结合而诱导逆向的循环(Mn~(2+)→Mn~(3+)→Mn~(4+))使活性氧空位再生.通过MnOx(Mn~(4+)/Mn~(3+)/Mn~(2+))变价而产生的活性氧(O~–)可将中间产物(NOH和N_2O_2~–)氧化为终产物(NO_2~–和NO_3~–).  相似文献   

6.
利用溶胶凝胶法制备CuO-CeO2-MnOx/γ-Al2O3催化剂颗粒,在固定床上测试其催化脱硝活性。CuO-CeO2-MnOx/γ-Al2O3催化剂在250℃~400℃脱硝效率保持在90%以上。活性组分氧化铈负载量的增多提高了催化剂在低温区脱硝活性。同时利用程序升温方法研究了催化剂对NH3和NO的氧化性能,随着温度升高NH3被过度氧化生成了NO和N2O。催化剂能将NO氧化生成NO2,但转化程度较低。脱附实验表明,NH3和NO在催化剂表面存在明显的吸附现象。较少的NH3吸附量和NH3过度氧化是高温下脱硝效率降低的主要原因。暂态实验显示,NH3以吸附态参与反应,而NO以气态或弱吸附态参与反应。  相似文献   

7.
本文采用沉淀法合成了MnO_x和Fe_2O_3金属氧化物,进而经通过硫酸酸化处理,制备了SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3两种催化剂,并考察了其NH_3选择性催化还原(NH_3-SCR)氮氧化物的性能.研究发现,经硫酸酸化后,SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3的脱硝活性得到了显著提升.通过一系列表征证实,SO_4~(2-)可以和Fe_2O_3形成固体超强酸,从而显著提高Fe_2O_3的酸性,有利于吸附和稳定碱性还原剂NH_3;同时,MnO_x经酸化后,氧化性受到一定程度的抑制,有利于减少高温下氨氧化副反应的发生,从而改善MnO_x和Fe_2O_3的脱硝效果.本文还对改性后的SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3进行组合,形成3种组合催化剂,发现组合催化可产生良好的协同效应,发挥了各自在低温和高温的脱硝优势,拓宽了高活性温度窗口(200~450℃;NO转化率90%),同时降低了副产物的生成,提高N_2的选择性.此外,将适宜于高温脱硝的SO_4~(2-)/Fe_2O_3放在前半段,而将适宜于低温脱硝的SO_4~(2-)/MnO_x放在后半段的组合方式,可获得最佳的脱硝效果,得到较高的N_2产率(80%,100~450℃),既有效地优化了Mn基催化剂的N_2选择性,又拓宽了Fe基催化剂的活性温窗.  相似文献   

8.
采用浸渍法制备了铈锰复合氧化物分子筛催化剂(Ce-Mn/ZSM-5),在固定床反应器上考察不同Ce/Mn质量比对分子筛催化剂选择催化还原NO的影响,利用XRD、TEM、NH_3-TPD、H_2-TPR、in-situ DRIFTS等手段对催化剂进行了表征分析。结果表明,双金属改性的Ce-Mn/ZSM-5催化剂在NH_3-SCR反应中表现出较为优异的催化活性,具有较宽的活性温度窗口。当Ce/Mn质量比为0.4时,催化剂具有最佳的脱硝效率,在265-465℃脱硝率均可达到80%以上,在370℃时,NO的转化率最高可达97.28%。锰和铈物种高度分散于催化剂表面,未改变ZSM-5的晶体结构,且构成协同作用。0.4Ce-Mn/ZSM-5具备丰富的酸性位、良好的氧化还原性能,该配比有助于催化剂的催化活性和稳定性的提高,在NH_3-SCR反应过程同时遵循E-R机理和L-H机理。  相似文献   

9.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

10.
近年来,氨-选择催化还原(NH_3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NO_x)排放的最有效手段之一.V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2催化剂在300-400°C范围内表现出优异的脱硝性能和抗H_2O和SO_2中毒性能,因而被广泛用于NH_3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO_2到SO_3的活性较高、高温下将部分NH_3非选择性地氧化成N_2O、V_2O_5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO_2)因具有氧化还原性能优异、储/释氧能力强和Ce~(3+)/Ce~(4+)转换容易等优点而广泛用于NH_3-SCR反应.然而,单纯CeO_2的脱硝性能并不理想.研究表明,将CeO_2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH_3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH_3-SCR催化性能的影响规律尚不明晰.此外,SiO_2,γ-Al_2O_3,ZrO_2和TiO_2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH_3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH_3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO_2,γ-Al_2O_3,ZrO_2和TiO_2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO_2/SiO_2,CeO_2/γ-Al_2O_3,CeO_2/ZrO_2和CeO_2/TiO_2)用于NH_3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H_2-TPR)以及氨气-程序升温脱附(NH_3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO_2/γ-Al_2O_3催化剂的表面Ce3+含量明显大于CeO_2/SiO_2,CeO_2/ZrO_2和CeO_2/TiO_2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH_3-SCR反应性能.其次,CeO_2/γ-Al_2O_3催化剂具有最佳的还原性能,有利于NO氧化为NO_2,进而通过"快速NH_3-SCR"途径提升其催化性能.再者,CeO_2/γ-Al_2O_3催化剂表面酸性位最多,能够促进反应物NH_3分子的吸附与活化,从而提高脱硝性能.最后,CeO_2/γ-Al_2O_3催化剂在H_2O和SO_2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

11.
磷酸三丁酯萃取脱硫废液中硫氰酸根的初步研究   总被引:2,自引:0,他引:2  
焦炉煤气含污染物H_2S 5g/m~3-8gm~3、HCN1g/m~3-2.5g/m~(3[1]),目前主要用催化氧化-氨水吸收法(NH_3-OMC)工艺处理.由此产生的脱硫脱氰废液中主要含有NH_4SCN、(NH_4)_2S_2O_3等无机盐,其中,SCN~-及S_2O_3~(2-)浓度均影响脱硫催化剂的效率,规定其总浓度不得超过250g/L.  相似文献   

12.
商业选择性催化还原(SCR)催化剂成分主要有 V2O5, WO3和 TiO2,但适用温度窗口较窄(300?400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯 TiO2和 ZrO2载体, TiO2-ZrO2具有较高的热稳定性以及较多的酸位,虽然有关 TiO2-ZrO2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对 NH3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同 NH3-SCR脱硝催化剂的起活温度不同.同时, NH3和 NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究 NH3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的 TiO2-ZrO2固溶体,并分步浸渍不同质量比的 WO3和1%V2O5,最终得到一系列1%V2O5-x%WO3/TiO2-ZrO2.然后通过 X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了 WO3和 ZrO2对催化性能的影响以及 V2O5-WO3/TiO2-ZrO2催化剂的反应机理. N2物理吸附结果表明, WO3的添加使得催化剂孔结构的热稳定性有所提高,同时随着 WO3含量增加催化剂的比表面积逐渐减小,但仍高于 V2O5/TiO2-ZrO2催化剂; ZrO2对催化剂比表面积增大效果比较明显.结合 XRD结果表明, WO3能促进金属氧化物在载体上的分散;相比于 V2O5-WO3/TiO2催化剂, ZrO2有利于活性组分的分散负载.比较系列 V2O5-x%WO3/TiO2-ZrO2的氨吸附情况,发现 WO3的添加增加了 Br?nsted酸的稳定性,其中以9%WO3的效果最显著.催化剂氨吸附中间物种(–NH2)的发现,证实了 WO3添加促进了 NH3的活化,有利于脱硝反应的进行. SCR反应结果显示, V2O5-9%WO3/TiO2-ZrO2催化剂在300–450oC时 NOx转化效率最优,并发现 O2的存在促进了 NOx的转化.采用in situ DRIFTS研究了 V2O5-x%WO3/TiO2-ZrO2催化剂脱硝机理,300和350oC时 NH3, NO, NO + O2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为 Lewis酸中心, Br?nsted酸中心的 NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与 NH3相比, NO只能以 NO2的形式弱吸附在催化剂表面.因此,该催化剂遵循 Eley-Ridel脱硝机理.而 V2O5-9%WO3/TiO2-ZrO2催化剂具有相对较高的脱硝效率,因此用来着重研究 NH3-SCR机理.在 NH3吸附过程中, NH3(1204,1602,3156,3264,3347 cm?1)和活性中产物 NH2(1550 cm?1)在催化剂表面的吸附(恒温300oC)是稳定的;随后通入 NO + O2时, NH3吸附过程中的所有吸收峰(包括 NH2)均逐渐减小(NH3吸附态与 NO结合后分解为 N2和 H2O),同时出现 H2O的振动峰,这证明了 V2O5-x%WO3/TiO2-ZrO2催化剂的脱硝反应过程.各类气体吸附情况表明, NO在商业催化剂的吸附状态与 V2O5-x%WO3/TiO2-ZrO2催化剂相同;但 NH3吸附结果表明, Br?nsted酸中心和 Lewis酸中心都是催化剂的活性中心; NO + O2的通入使得催化剂表面的 NH3和 NH4+都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的 NOx脱除路径.通过in situ DRIFTS比较 O2的存在对脱硝反应产生的不同影响来确定 O2的作用.两类催化剂上 O2均参与了 H2O的形成,促进了催化反应的完成;当 O2不存在时, NO的还原受到了极大地抑制,同时也未出现 H2O;两者的脱硝效率大大降低. H2-TPR和 NH3-TPR结果进一步证实 O2的作用主要是氧化 NO及参与催化过程 H2O的形成.  相似文献   

13.
通过将C_9H_(10)O_2-0.5ZnCl_2双酸型低共熔溶剂固载到Al_2O_3上制备了C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3催化剂。该催化剂采用XRD、FT-IR、SEM、EDS、N_2吸附-脱附技术进行了分析。以C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3为催化剂,过氧化氢为氧化剂研究模拟油中芳香族硫化物的脱除性能。考察反应参数如温度、催化剂加入量、O/S物质的量比、硫化物类型等对催化剂脱硫活性的影响。实验结果表明,在模拟油为5 mL、催化剂量为0.2 g、O/S比为8、反应温度为60℃、反应时间为180 min的条件下,模拟油中二苯并噻吩(DBT)脱硫率为99.2%。此外,在模拟油氧化脱硫中催化剂循环使用六次,其氧化脱硫活性略有降低。研究了C_9H_(10)O_2-0.5ZnCl_2/Al_2O_3催化氧化脱硫的反应机理。  相似文献   

14.
应用红外光谱研究了CO,NO及其混合气在氧化态CuO/γ-Al_2O_3上的吸附。用XPS测量了表面铜的价态,用XRD分析了催化剂的物相。综合实验结果可知,催化剂体相为CuO,,CuAl_2O_4,,而Cu~+和Cu~(2+)则在样品表面上并存。红外光谱显示,CO在Cu~+上的吸附比在Cu~(2+)上的吸附强,而NO在Cu~(2+)上的吸附比在Cu~+上的吸附强。当CO和NO共存在体系中,CO选择吸附在Cu~+上,而NO选择吸附在Cu~(2+)上。高于室温时,除分子态吸附外,CO在催化剂表面上部分氧化为HCO_3~-,,CO_3~(2-)以及少量HCOO~-,NO吸附,被氧化为NO_3~-。CO和NO共吸附,CO抑制了NO的氧化。  相似文献   

15.
在众多的氧化物类NH_3-SCR催化剂体系中,Mn基氧化物催化剂因具有极高的低温(≤473 K)脱硝性能而备受关注.其主要原因可能是Mn物种具有丰富的可变价态,作为活性组分的MnO_x能够提供自由电子.大量研究发现,由于不同金属元素间协同作用的存在,复合金属氧化物的催化脱硝活性普遍优于单金属氧化物类催化剂.为了抑制MnO_x在锻烧过程中的烧结,提高MnO_x的催化活性,一系列过渡金属氧化物,如Fe,Cu,Ni和Cr等的氧化物,被用来作为改性剂加入到MnO_x催化剂中.近年来,很多研究者将稀土元素作为改性剂加入到MnO_x催化剂中,并发现稀土金属氧化物的添加可以改善催化剂的活性、选择性、热稳定性及抗毒性能,是良好的添加助剂,其中对Ce的关注度颇高.而储氧性能是CeO_2最重要的性质,CeO_2对氧气的存储和释放可以通过Ce~(4+)和Ce~(3+)两种价态之间的变化实现.文献研究表明,将CeO_2加入到锰氧化物材料中,能够提高锰氧化物在程序升温脱附过程中氧的脱附量,并且在低温条件下能够为锰氧化物提供氧,从而对锰氧化物的氧化态产生影响.此外,我国拥有丰厚的稀土Ce资源储备,使得锰铈复合氧化物在吸附脱除NO_x方面得到广泛应用.催化剂作为选择性催化还原(SCR)工艺的核心,现阶段的研究重点主要集中于新型低温高活性催化剂的研究,如活性组分、载体组分、焙烧温度、焙烧时间及焙烧升温程序等,这表明焙烧过程对于催化剂性能的重要性.然而,在催化脱硝领域,对焙烧气氛的研究极少,但借鉴其他领域对焙烧气氛的研究,确有研究者证实焙烧气氛对材料的颗粒大小、缺陷浓度、价态及物相组成等有着显著的影响,进而影响材料的活性.我们课题组曾研究了焙烧气氛对MnO_x/TiO_2脱硝性能的影响,并发现惰性气氛中焙烧的催化剂表现出最佳活性,然而对于催化剂催化性能增强的原因并未深入探究.在前期研究基础上,以MnO_x和CeOx为活性组分,采用浸渍法制备得到Ce-Mn/TiO_2催化剂,通过X射线衍射(XRD)、氢气程序升温还原(H_2-TPR)、热重(TG)、扫描电子显微镜(SEM)、氨气程序升温脱附(NH_3-TPD)和X射线光电子能谱(XPS)等表征手段系统地研究了MnO_x和CeOx担载于TiO_2表面制成的催化剂在不同气氛(N_2,空气和O2)中焙烧后的催化性能和物相结构.XRD,TG和H_2-TPR测试结果表明,在N_2气氛中焙烧有利于催化剂氧化度与结晶度的降低,催化剂中主要存在两种主要活性成分:大量的Mn2O3和少量的Mn3O4.SEM图揭示了在N_2气氛下焙烧能够有效抑制晶粒长大,促进颗粒分散.NH_3-TPD结果表明,N_2气氛下焙烧的催化剂拥有更多的表面酸性位点,从而有利于反应气在催化剂表面的吸附和活化.结合XPS分析结果与脱硝活性测试结果,较低价态的MnO_x以及较高的表面活性氧浓度(Oα)更有利于NH_3-SCR反应的进行.不同焙烧气氛下0.20Ce-Mn/TiO_2催化剂(Ce:Ti摩尔比为0.20)上NO转化率顺序如下:N_2(94%)空气(85.6%)O2(75.6%).以上结果清晰地表明N_2焙烧气氛显著提升了催化剂的脱硝活性.  相似文献   

16.
甲醛作为一种典型的室内挥发性有机污染物,对人体健康危害很大.目前,在可用于室内甲醛脱除的诸多方法之中,臭氧催化氧化法因可于室温下使用廉价的金属氧化物催化剂实现对甲醛的高效脱除,从而受到了科研工作者的广泛关注.然而,考虑到室内甲醛的浓度极低,且存在着长期缓慢释放的特点,传统的臭氧催化氧化法应用于实际的室内甲醛脱除不仅会造成能量的浪费,而且还易因未完全分解臭氧的连续释放带来二次污染问题.为了提高臭氧催化氧化脱除甲醛过程的臭氧利用率,降低能耗,并有效缓解未分解臭氧引起的二次污染,本文将一种循环的甲醛存储-臭氧催化氧化新方法应用于室内低浓度甲醛的脱除.该新方法包含甲醛存储与臭氧催化氧化两个过程,在存储阶段低浓度甲醛吸附存储于催化剂表面,而在臭氧催化氧化阶段臭氧将存储的甲醛氧化为CO_2与H_2O,并重新释放催化剂表面的吸附位.因负载型氧化锰具有优良的臭氧分解能力,本研究以Al_2O_3负载的MnO_x为催化剂,通过研究前驱体及担载量对甲醛脱除反应的影响,筛选出了最优的MnO_x/Al_2O_3催化剂,并对相对湿度的影响规律进行了考察,最后通过低浓度甲醛存储-臭氧催化氧化循环实验验证了该甲醛臭氧催化氧化新过程的可靠性.我们采用传统的等体积浸渍法,基于不同的前驱体制备MnO_x/Al_2O_3催化剂.XRD表征结果表明,乙酸锰为前驱体制得的MA/Al_2O_3催化剂中MnO_x相主要为Mn3O4(粒径约为6.0 nm);而硝酸锰前驱体所得MN/Al_2O_3催化剂中则含有MnO2与Mn_2O_3相,且其MnO_x颗粒粒径较大,约为9.5 nm.XPS测试结果表明,MA/Al_2O_3催化剂含有Mn~(2+),Mn~(3+)及Mn~(4+),其中Mn~(3+)与Mn~(4+)的含量分别为75%与12%;而MN/Al_2O_3催化剂则仅含有Mn~(3+)与Mn~(4+),含量分别为35%与65%.上述XRD与XPS结果相一致,说明以乙酸锰为前驱体所得催化剂的分散度较高且易形成低氧化态的Mn.甲醛存储-臭氧催化氧化实验结果表明,与Al_2O_3及MN/Al_2O_3相比,MA/Al_2O_3催化剂具有更高的甲醛存储与催化氧化脱除性能.基于MA/Al_2O_3催化剂,不同Mn负载量下的甲醛存储与臭氧催化氧化实验结果表明,Mn负载量为10 wt%时MA/Al_2O_3的性能最佳.因而,进一步的实验中我们均选用最优的10 wt%MA/Al_2O_3为催化剂,其在50%相对湿度下的甲醛存储量为26.9μmol/mL,臭氧催化氧化阶段碳平衡为92%,CO_2选择性为100%.相对湿度的影响结果(23°C)则表明,由于水分子与甲醛分子间存在着竞争吸附作用,甲醛存储容量随相对湿度的增加而降低;但因相对湿度增加可建立利于甲醛氧化的新途径,故臭氧催化氧化性能随相对湿度增加而增强.综合考虑,10 wt%MA/Al_2O_3上甲醛存储-臭氧催化氧化的最优相对湿度为50%.为验证所提出新方法的实用性,我们基于10 wt%MA/Al_2O_3开展了甲醛存储-臭氧催化氧化的4次循环实验.4次循环实验中的甲醛存储以及臭氧催化氧化处理的规律可基本保持一致.50%相对湿度下,低浓度甲醛(15×10-6)在空速为27000 h-1时的穿透时间为110 min,而在臭氧催化氧化阶段(150×10-6臭氧,空速15000 h-1)仅需约50 min即可实现对存储甲醛的氧化脱除(碳平衡大于92%,CO_2选择性100%),表明该新方法较传统的臭氧催化氧化方法臭氧用量可节省60%.  相似文献   

17.
采用涂覆法制备了CoAl_2O_4/蜂窝陶瓷催化剂。利用X射线衍射、N_2吸附-脱附和透射电镜等方法对所制备的催化剂进行了表征,并分析了其催化臭氧化降解对苯二酚的效能。结果表明,CoAl_2O_4/蜂窝陶瓷的晶相属于典型的尖晶石结构,具有较大的比表面积、孔容和孔径,分别达到77 m~2·g~(-1)、0.001 7 cm~3·g~(-1)和3.9 nm。CoAl_2O_4/蜂窝陶瓷催化臭氧化对苯二酚的去除率高达81.2%,COD去除率可达47.7%。在叔丁醇存在的条件下,对苯二酚的去除率显著下降,说明CoAl_2O_4/蜂窝陶瓷催化臭氧化遵循羟基自由基机理。  相似文献   

18.
NH3在V2O5/AC催化剂表面的吸附与氧化   总被引:6,自引:0,他引:6  
 将V2O5担载在活性焦(AC)上制得V2O5/AC催化剂,通过吸附脱附实验、程序升温脱附实验与原位质谱结合,对200 ℃下NH3在V2O5/AC催化剂表面的吸附和氧化行为进行了研究. 结果表明, AC具有吸附NH3和将NH3转化为NO的能力,这种能力可能源于两种活性位; 担载V2O5后,催化剂对NH3的吸附能力显著增强,并产生了新的NH3氧化产物N2, 但NH3氧化为NO的能力减弱; SO2在催化剂表面的吸附进一步增大了V2O5/AC对NH3的吸附量,这可能是因为硫铵盐的生成消除了催化剂将NH3氧化转化为NO和N2的能力. 当催化剂表面吸附的NH3接近饱和,即表面接近酸碱平衡后NH3才能被氧化为N2. NH3的几个氧化反应都主要依赖气相的O2, 催化剂自身的化合氧作用很小.  相似文献   

19.
近年来, NO_x的排放造成了严重的环境污染.氨选择性催化还原技术(NH3-SCR)是目前消除NO_x最有效的手段之一.V_2O_5-WO_3/TiO_2催化剂在300–400°C范围内表现出优异的脱硝性能,因此被广泛用于NH3-SCR反应.然而该催化剂抗碱(土)金属中毒性能较差,且碱(土)金属碱性越强对催化剂的毒害越大(即K Na Ca Mg).已有研究显示,当K_2O质量分数达1%时,催化剂将完全失活,所以对传统的V_2O_5-WO_3/TiO_2催化剂进行改性以提高其抗K中毒性能具有十分重要的意义.最近, CeO_2由于具有优异的氧化还原性能和储/释氧能力,在NH3-SCR反应得到了广泛的关注.研究显示, CeO_2的改性可提高钒基催化剂脱硝活性及抗碱金属中毒性能,这主要是由于CeO_2的掺杂可以有效提高催化剂表面酸性及氧化还原能力. ZrO_2是一种酸碱两性氧化物,常被用作载体或者助剂.研究显示, ZrO_2的引入可以提高催化剂热稳定性,增大比表面积以及提高氧迁移能力.基于此,我们制备了一系列的V_2O_5-WO_3/TiO_2-ZrO_2, V_2O_5-WO_3/TiO_2-CeO_2以及V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化剂,以期提高V_2O_5-WO_3/TiO_2催化剂脱硝性能及抗K中毒能力.研究发现, Ce~(4+), Zr~(4+)共掺杂可以有效提高V_2O_5-WO_3/TiO_2催化活性,拓宽反应温度窗口,增强抗K中毒能力.进一步借助X射线衍射、比表面积测定、氨气-程序升温脱附、氢气-程序升温还原和X射线光电子能谱等表征对催化剂进行全面分析.结果显示, Ce~(4+), Zr~(4+)共掺杂对V_2O_5-WO_3/TiO_2催化剂物理化学性质的影响与其脱硝性能及抗K中毒能力有着密不可分的关系.首先, Ce~(4+), Zr~(4+)可以掺杂进入TiO_2晶格,抑制TiO_2晶粒的生长,从而导致比表面积以及总孔体积的增加;比表面积的增加有利于活性物种的分散,而总孔体积的增加有利于反应物分子与催化剂充分接触.其次, Ce~(4+), Zr~(4+)共掺杂可以提高催化剂表面酸性和氧化还原性能,表面酸性的增加有利于催化剂吸附与活化反应物种NH_3,氧化还原性能的提高有利于NO氧化为NO_2,进而通过"快速NH3-SCR"反应提高催化剂活性;同时, Ce~(4+), Zr~(4+)共掺杂还可以有效降低K中毒对表面酸性和氧化还原性能的影响,这主要是由于Ce~(4+)可以与K原子结合形成Ce-O-K物种,而Zr~(4+)的引入可以增加Ce~(4+)的热稳定性,使得更多的Ce~(4+)与K结合,避免了K与活性钒物种结合形成V-O-K物种,使得活性V5+得到了有效的保护.原位红外实验揭示了V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化反应遵循L-H机理,且K中毒并未改变其反应机理.最后,该催化剂在H_2O和SO_2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际高K含量的燃煤烟气脱硝.  相似文献   

20.
石墨相氮化碳(g-C_3N_4)具有独特的二维层状结构和合适的能带结构,因而在可见光催化领域广受关注.尤其是在可见光去除环境污染物领域,得到了较为充分的研究与应用.然而g-C_3N_4去除环境污机理的反应机理尚不明确.因此,本文采用理论计算与实验高度结合的研究方法,以光催化NO去除为例,深入阐述了光照下g-C_3N_4表面活性氧物种(ROS)的生成及转化过程,及其介导下的NO光催化氧化机理.X射线衍射结果表明,g-C_3N_4是三嗪环层内聚合后层层堆叠而成,并由红外光谱确定了其表面的官能团类型.该结构经扫描电镜和透射电镜得到了进一步的验证.采用光致激发谱和紫外可见漫反射光谱等实验表征与密度泛函理论计算结合的光电性质分析,我们发现,g-C_3N_4在可见光下具有一定的响应,这为其在光催化去除NO中奠定了基础.同时,其价带位置过高,无法自行产生氧化性较强的羟基自由基(.OH).电子自旋共振技术结果表明g-C_3N_4在光照下能捕获到·O_2~-和·OH两种活性自由基.采用反应路径计算发现,·OH是由·O_2~-在导带上逐步得到电子被还原而生成,其中的速率控制步骤是H_2O_2的解离.因此,促进O_2分子的吸附和活化和克服H_2O_2解离的反应活化能是产生·OH和提升g-C_3N_4光催化氧化活性的关键.采用原位红外光谱技术对g-C_3N_4上NO的氧化去除过程进行了表征,发现其主要中间产物为NO_2,主要终产物为NO_2~-和NO_3~-,采用反应路径计算对该反应过程进行了理论模拟,发现在·O_2~-介导下,最高反应活化能为0.66 eV,而在·OH介导下,该活化能降低至0.46 eV,表明·OH的氧化性要明显强于·O_2~-.总之,本文采用一种可行的、高度结合的实验与计算手段研究了g-C_3N_4上ROS的生成及转化过程及其对NO去除的反应历程,在原子尺度揭示了该反应的机理,加深了对ROS在光催化环境污染物降解过程中作用的理解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号