首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锰氧化物是一类环境友好型材料,可以有效活化过一硫酸盐(PMS)降解水中难降解有机污染物.但是锰氧化物在单独使用时容易出现严重的团聚现象,进而降低其对PMS的催化活性,不利于水中污染物的降解.因此,人们通常将锰氧化物负载于多孔的载体材料上.金属有机骨架材料(MOFs)因具有巨大的比表面积和温和的制备条件而广受关注.本文采用温和的溶剂热法首次成功制备了Mn3O4与MOF的复合材料Mn3O4/ZIF-8,并通过X射线衍射、扫描电镜、透射电镜、X射线光电子能谱和红外光谱等手段对其进行了表征,探究了Mn3O4/ZIF-8的形成机理.考察了Mn3O4负载量对Mn3O4/ZIF-8催化性能的影响,以及Mn3O4/ZIF-8投加量、PMS投加量、初始罗丹明B(RhB)浓度和反应温度对RhB去除效果的影响,同时探究了Mn3O4/ZIF-8的重复使用性能,分析了RhB的降解途径、去除机理以及最终的降解副产物.结果表明,边长为50?150 nm的片状Mn3O4均匀分散在粒径为250 nm的六边形ZIF-8的外表面;当Mn3O4负载量为0.5时,所制备的复合材料0.5-Mn/ZIF-120活化PMS对RhB的降解效果最好,反应60 min时RhB降解率可达到99.4%,且Mn的浸出量可以忽略不计.在该体系中,RhB的降解过程符合一级动力学反应方程,其降解速率常数随催化剂和PMS投加量的增加、反应温度的提高和初始RhB浓度的减小而增大.在0.5-Mn/ZIF-120催化剂投加量为0.4 g/L、PMS投加量为0.3 g/L、初始RhB浓度为10 mg/L、初始溶液pH为5.18及室温(23oC)条件下,水中RhB的降解率在40 min时即可达到98%.淬灭实验表明,该体系中HO?起主导作用,而其主要来源于活化PMS所产生的SO4–?.此外,通过简单的二次水冲洗方式对0.5-Mn/ZIF-120催化剂进行回收使用,在连续5次循环使用后仍然可见较高的催化活性和稳定性,RhB的去除率保持在96%以上,且Mn的浸出百分率始终低于5%.  相似文献   

2.
胡龙兴  杨帆  邹联沛  袁航  胡星 《催化学报》2015,(10):1785-1797
由于硫酸根自由基(SO4?-)的强氧化性,基于SO4?-的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO4?-用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体, Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoFe/SBA-15投加量、氧化剂PMS投加量和反应物(RhB和PMS)初始浓度对其性能的影响,探讨了RhB的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对CoFe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使RhB的降解率达到96%以上, Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下, RhB的降解符合一级动力学方程, RhB降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在CoFe/SBA-15, PMS和RhB水溶液体系中,存在的主要活性自由基为SO4?-,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用. RhB降解过程的UV-vis结果表明, RhB的降解途径主要是蒽环打开, SO4?-优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物. CoFe/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%, Co和Fe的浸出量均分别小于72.1和35μg/L. CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO4?-降解水中RhB,具有实际应用的潜力.  相似文献   

3.
由于硫酸根自由基(SO·-4)的强氧化性,基于SO·-4的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO·-4用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体,Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoF e/SBA-15投加量、氧化剂PMS投加量和反应物(Rh B和PMS)初始浓度对其性能的影响,探讨了Rh B的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对Co Fe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使Rh B的降解率达到96%以上,Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下,RhB的降解符合一级动力学方程,Rh B降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在Co Fe/SBA-15,PMS和RhB水溶液体系中,存在的主要活性自由基为SO·-4,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用.RhB降解过程的UV-vis结果表明,RhB的降解途径主要是蒽环打开,SO·-4优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物.CoF e/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%,Co和Fe的浸出量均分别小于72.1和35μg/L.CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO·-4降解水中RhB,具有实际应用的潜力.  相似文献   

4.
通过煅烧-浸渍法制备了铁酸锰和钴共改性生物碳(Co/MnFe_2O_4/Biochar,CMB),采用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)和N_2吸脱附等温仪(BET)对CMB进行形貌观察和结构表征,并用其催化过硫酸氢钾(PMS)降解染料罗丹明6G(Rh 6G),研究了CMB投加量、PMS投加量、溶液初始pH值、水中常见物质(如Cl~-、HCO_3~-、H_2PO_4~-、HA)对CMB/PMS体系降解Rh 6G的影响。实验结果表明,随着CMB和PMS投加量的增大,Rh 6G降解效率也随之增高。在溶液初始pH在5-9范围内,Rh 6G的降解率可达98%以上。Cl~-、HCO_3~-、H_2PO_4~-、HA对CMB催化PMS降解Rh 6G影响微弱。自由基猝灭反应实验结果证明SO_4·~-、~1O_2和O_2~-·对Rh 6G的降解起主要作用。重复利用实验表明,CMB经过五次循环使用后,降解率仍可达76.7%。  相似文献   

5.
采用煅烧法制备了以木质素生物炭为载体的单原子催化剂(Ni-N-C-10), 用于高效活化过硫酸盐(PMS)降解苯酚. 利用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 经球差校正的高角度环形暗场扫描透射电子显微镜(AC-HAADF-STEM)、 X射线粉末衍射仪(XRD)以及X射线光电子能谱仪(XPS)等对材料进行了表征分析, 证明合成了原子分散的催化剂Ni-N-C-10. 探究了制备过程中双氰胺的投加量和降解实验中催化剂投加量、 PMS投加量、 pH值以及温度对苯酚降解的影响. 结果表明, 在催化剂制备过程中, 加入10倍质量比的双氰胺更有利于实现原子分散. Ni-N-C-10/PMS体系在较低的催化剂和PMS投加量、 以及较宽的pH值范围(3~9)内都能有效活化PMS降解苯酚. 此外, 该体系的稳定性好且应用范围广, 除了能高效降解苯酚外还能快速降解双酚A、 四环素和亚甲基蓝. 电子顺磁共振检测和自由基淬灭实验结果表明, Ni-N-C-10/PMS体系降解苯酚为SO4?-、 ·OH和1O2 3种主要活性物种共同作用的结果, 其中1O2起主导作用. 反应前后Ni-N-C-10催化剂的XPS分析结果表明, 催化降解苯酚的效率与Ni位点呈正相关.  相似文献   

6.
TiO2/膨润土光催化降解有机污染物   总被引:9,自引:0,他引:9  
用溶胶-凝胶法制备了一系列TiO2/膨润土光催化剂(不同负载量和不同焙烧温度), 以罗丹明B(RhB)为模型化合物, 通过测定染料吸光度和体系化学需氧量(COD)变化, 来研究它们在紫外光照射下降解有机污染物的性能. 评价结果表明, 负载量为50%和焙烧温度为400 ℃的催化剂Ti400样品降解RhB活性较好, 虽然其矿化活性略小于P25(光照4 h P25的COD变化为99.7%, 400 ℃焙烧的TiO2/膨润土催化剂Ti400的COD变化为97.0%), 但是TiO2/膨润土催化剂更易于回收再利用. 用Ti400做催化剂降解RhB, 连续循环使用7次, 其催化活性基本不变. 用XRD、BET和紫外可见漫反射(UV-Vis DRS)等方法对这些催化剂进行了表征. 表征结果表明催化剂比表面积大有利于催化活性的提高.  相似文献   

7.
通过水热法制备MnAl层状双金属氢氧化物(MA),采用扫描电镜(SEM)、傅里叶红外光谱仪(FTIR)、X射线衍射仪(XRD)和比表面积分析仪(BET)对其进行表征,并用其活化过一硫酸盐(PMS)降解偶氮染料橙黄Ⅱ。实验结果表明,当温度为25℃,溶液初始pH为7,0.1 g/LMA,1 mmol/LPMS,反应90分钟后20mg/L橙黄Ⅱ降解率为85.2%。橙黄Ⅱ的降解率随着PMS浓度、溶液初始pH值和温度升高而增大。MA投加量有最优值。水中常见离子Cl-、NO3-、HCO3-、HPO4-、HA都对降解有一定的抑制。自由基猝灭实验结果表明体系中的主要氧化物种为1O2。经过5次循环使用后,橙黄Ⅱ的降解率还可达到38.2%。在实际水体应用中,橙黄Ⅱ的降解率可达53.8%。  相似文献   

8.
王婷婷  张峰  张恒 《化学研究》2012,23(4):36-38
采用微波辐照促进的溶胶浸渍法制备了铁锌柱撑膨润土催化剂;用制备的催化剂对甲基橙溶液在可见光照射下进行降解,探讨了铁负载量、H2O2质量浓度、溶液初始pH、反应时间和催化剂投加量对甲基橙降解率的影响,并考察了催化剂的重复利用性能.结果表明,在pH为3、H2O2质量浓度100mg/L、催化剂投加量1.5g/L、反应时间为2h条件下,甲基橙降解率可达97%.  相似文献   

9.
通过共沉淀法优化制备了Fe_3O_4为内核的磁性核壳式Ce掺杂ZnO催化剂(Fe_3O_4@ZnO-Ce),考察催化剂的稳定性和适用性,利用SEM、BET、ICP-AES、XRD、UV-Vis DRS、VSM、FT-IR等手段对催化剂进行表征,研究温度、pH、催化剂投加量对罗丹明B降解率的影响。结果表明,Ce掺杂ZnO包覆在Fe_3O_4表面形成球状纳米颗粒,平均粒径约100 nm,Fe_3O_4和3%Ce掺杂ZnO最佳物质的量之比为1:20,400℃煅烧2 h。日光模拟灯为光源,在pH为7、水温30℃、催化剂投加量0.2 g/100 mL、90 min罗丹明B降解率达到92%,6次循环套用降解率达到53%以上。  相似文献   

10.
 以非均相沉淀法制备了凹凸棒石 (PG) 载体上负载锰氧化物催化剂 Mn/PG, 并用于低温选择性催化还原法 (SCR) 脱硝反应. 采用 X 射线衍射、透射电子显微镜和 H2-程序升温还原方法对催化剂进行了表征; 通过 NH3 吸脱附实验考察了催化剂的锰负载量和煅烧温度对 NH3 吸附和脱附量及吸附位的影响. 结果表明, 锰氧化物高度分散于 PG 晶体表面, 其存在状态取决于催化剂煅烧温度. 煅烧温度低于 550 oC, 锰氧化物为 Mn2O3 和 Mn3O4, 煅烧温度为 550 oC 时, 锰氧化物为 Mn3O4. NH3 主要吸附在 PG 载体上, 锰氧化物的担载基本不影响催化剂吸附 NH3 的能力, 但促进了吸附 NH3 的活化, 这是催化剂 SCR 活性显著增加的直接原因.  相似文献   

11.
MnOx/TiO2催化剂的表面状态与氧化活性   总被引:1,自引:0,他引:1  
研究了不同负载量的MnO_2/TiO_2系列催化剂的表面状态及CO氧化活性。结果表明,当MnO_2负载量低于5.7wt%时,MnO_2呈Mn_2O_3相;高于5.7wt%时,MnO_2则为Mn_2O_3+MnO_2混合相。Mn_2O_3由分散态到聚集态的分散阀值为0.028g Mn_2O_3/100mm~2 TiO_2。催化剂氧化活性与其表面状态密切相关。当Mn~(3+)、Mn~(4+)共存时,有利于提高氧化活性。  相似文献   

12.
钴/过一硫酸氢盐(Co/PMS)是为了克服Fenton技术的诸多缺陷而基于类Fenton思路(过氧化物+过渡金属)建立起来的一种高级氧化技术。该体系具有Co用量少(μg/L数量级),产生的SO4氧化还原电位高,能够在广泛的pH范围(2-9)降解有机污染物,反应后不产生污泥等优点,在环境污染治理领域具有广阔的应用前景。本文从自由基链式反应、溶液pH、阴离子效应、光照条件、反应气氛及固液两相交换六个方面分析了Co/PMS体系降解水中有机污染物的机理,并在此基础上综述了Co/PMS (黑暗条件)、UV/Co/PMS、Vis/Co/PMS三类均相Co/PMS体系以及Co氧化物催化、Co负载催化两类非均相Co/PMS体系降解水中有机污染物的国内外研究进展,并就存在的问题提出了展望。  相似文献   

13.
新型杂多酸盐光催化降解亚甲基蓝染料废水   总被引:2,自引:0,他引:2  
石淑云  任百祥 《应用化学》2016,33(5):577-582
以水热自组装法合成的新型杂多酸盐[PMo8V6O42][Co(Phen)2][Him]2·2H3O·3H2O(1),通过红外光谱、拉曼光谱、紫外-可见光谱、光电子能谱和X粉末衍射等技术手段进行表征。 以此物质为催化剂光催化降解亚甲基蓝染料废水。 分别讨论催化剂投加量、亚甲基蓝废水初始浓度、废水溶液酸度(pH)对亚甲基蓝降解率的影响。 实验结果表明:催化剂投加量为50 mg/L、亚甲基蓝初始浓度为4 mg/L、模拟废水溶液的初始pH=1、降解时间220 min时,废水降解率可达到99.2%。 光催化动力学分析显示,以合成杂多酸盐为催化剂光催化降解亚甲基蓝废水降解过程满足一级动力学方程,该一级方程反应速率常数为0.0144 min-1,拟合常数为0.9918。 另外,此催化剂还表现出较好的重复使用性能,连续使用5 次后降解率仍为92.4%。  相似文献   

14.
过一硫酸盐催化活化技术因其可产生强氧化性活性氧化物种,可快速氧化降解并矿化有机污染物的优异性能而备受关注.本文成功制备了亚微米级Cu~0/Fe_3O_4复合物,发现其能多相催化过一硫酸盐产生单线态氧降解有机污染物.首先,以CuCl_2·2H_2O,FeCl_2·4H_2O和FeCl_3·6H_2O为铜源和铁源,水合肼为还原剂,采用水热法在180℃反应24 h制备了亚微米级磁性Cu~0/Fe_3O_4复合物.表征结果显示,所制材料为Cu~0和Fe_3O_4的复合物,颗粒大小约为220 nm;单一相Cu~0和Fe_3O_4晶体粒径分别为33.8和106.2 nm,而Cu~0/Fe_3O_4复合物中Cu~0和Fe_3O_4晶体粒径分别减为20.8和31.9 nm.这表明Cu~0和Fe_3O_4复合降低了Cu~0和Fe_3O_4晶体粒径,有利于Cu~0和Fe_3O_4的分散.BET测试结果表明,Cu~0/Fe_3O_4复合物比表面积为4.6 m~2/g,与Cu~0颗粒的(4.2 m~2/g)相当,但远小于Fe_3O_4的(15.6 m~2/g).制备的Cu~0/Fe_3O_4复合物可有效催化过一硫酸盐产生单线态氧降解罗丹明B、亚甲基蓝、金橙Ⅱ、苯酚和对氯酚.当Cu~0/Fe_3O_4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,Cu~0/Fe_3O_4复合物可在30 min内完全降解20μmol/L的罗丹明B、亚甲基蓝、金橙Ⅱ以及0.1 mmol/L的苯酚和对氯酚.对比试验显示,在相同条件下,Cu~0和Fe_3O_4颗粒分别可以降解28%和20%的罗丹明B.这表明Cu~0/Fe_3O_4复合物中的Cu~0和Fe_3O_4晶体在催化过一硫酸盐降解污染物的反应中具有协同作用,这主要来源于Cu~0/Fe_3O_4复合物中Cu~0和Fe_3O_4的晶体粒径变小和更好的分散.采用分光光度法测定了降解反应液中铜和铁离子的溶出量.当Cu~0/Fe_3O_4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,反应60 min后,降解液中铜和铁离子的浓度分别为0.22和0.1 mg/L,仅占复合物中总铜和总铁量的1.1%和0.2%,表明Cu~0/Fe_3O_4复合物具有较强的化学稳定性.所制Cu~0/Fe_3O_4复合物具有超顺磁性,借助磁场实现快速分离回收,可循环利用五次,表明其优越的催化稳定性.通过加入乙醇和叠氮化钠,考察了Cu~0/Fe_3O_4复合物催化活化过一硫酸盐体系中的活性氧化物种.发现100 mmol/L乙醇的加入对污染物的降解无明显影响,而加入同等量的叠氮化钠可完全抑制污染物的降解,表明Cu~0/Fe_3O_4复合物催化活化过一硫酸盐产生的主要活性氧物种为单线态氧.采用电子顺磁共振谱进一步证实了单线态氧的生成.基于以上研究,Cu~0/Fe_3O_4复合物催化活化过一硫酸盐的机理为Cu~0/Fe_3O_4作为一个电子媒介加速过一硫酸盐和污染物之间的电子转移,从而导致污染物被快速降解.该反应机理不同于常见的金属催化过一硫酸盐产生硫酸根和羟自由基的反应机理.我们推测,电导性优良的Cu~0在此催化反应中起着关键性作用.本催化方法可作为一种绿色的氧化技术用于环境污染物的氧化降解处理.  相似文献   

15.
以介孔二氧化硅SBA-15 为载体, 采用等体积浸渍法制备了Fe/SBA-15. 通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对其进行了表征, 并用于对水溶液中罗丹明B (RhB)的芬顿氧化. 表征结果表明了Fe/SBA-15维持了长程有序的介孔结构, 孔径和比表面积都有所下降, 并呈现棒状体的聚集态, 平均直径为0.6 μm. Fe 以α-Fe2O3的形态同时存在于介孔孔道内外. 在Fe/SBA-15 和H2O2同时存在条件下RhB的去除是吸附和催化氧化降解的协同作用所致, 并且与Fe/SBA-15 投加量密切相关, 但与初始溶液pH 几乎无关. 当Fe/SBA-15 投加量为0.15 g·L-1, RhB 初始浓度为10.0 mg·L-1,H2O2/Fe3+摩尔比为2000:1,初始溶液pH为5.4和反应温度为21 ℃时, RhB去除率达到了93%. Fe/SBA-15的Langmiur 单分子层饱和吸附量为99.11 mg·g-1. 此外, 采用H2O2浸泡方式对使用过的Fe/SBA-15可进行再生,连续6 次循环使用后仍可维持80%的RhB去除率, 且每次使用后Fe浸出浓度都在0.1 mg·L-1 (或者0.6% (质量分数))以下. 基于淬灭实验、UV-Vis 光谱和气相色谱-质谱(GC-MS)联用仪分析的结果, 提出了RhB的去除机理. 非均相芬顿催化剂Fe/SBA-15可用于去除像RhB这样的生物难降解有机物.  相似文献   

16.
将八正丁硫基四氮杂钴卟啉(CoPz(BuS)_8)分别负载到载体Al_2O_3和SiO_2@Fe_3O_4以及与配体叠氮轴向配位,并在模拟太阳光的氙灯照射下通入空气,通过降解水中染料罗丹明B(RhB)来评估其光催化活性.载体Al_2O_3有高的比表面积和好的化学惰性,其表面还存在一些氧空位以促进氧化反应中活性氧的流动;虽然磁性纳米颗粒(MNP)Fe_3O_4表面存在酸腐蚀和自聚集问题,但在MNP外面包覆一层具有较好吸附和稳定性能的SiO_2膜,因而也是较好的催化剂载体.富电子的NaN_3可增强某些缺电子的过渡金属大环络合物催化氧化反应,是较好的轴向配体.在不同pH水溶液中降解RhB的动力学曲线表明,反应为准一级.复合催化剂CoPz(BuS)_8/Al_2O_3上RhB降解率在pH=4时经160 min达到84.6%,在pH=7和pH=9时经12 h分别达到65.1%和49.2%.复合催化剂CoPz(BuS)_8/SiO_2@Fe_3O_4的透射电镜(TEM)和红外光谱(FTIR)表征表明,SiO_2包覆完整,复合粒子在1083 cm~(-1)有SiO_2的吸收峰,在2910 cm~(-1)有CoPz(BuS)_8的烷基吸收峰,说明NMP上存在SiO_2和CoPz(BuS)_8,表明复合粒子制备成功;其光催化反应的降解率在pH=4,7和9时经12 h分别达到66.3%,41.9%和29.6%.尽管CoPz(BuS)_8负载到Al_2O_3上比负载到SiO_2@Fe_3O_4上活性高,但后者分离容易,可重复使用,尤其是可随时终止反应.这意味着不同的污染物可用性能不同的催化剂/MNP系统去除,而催化剂可高效回收.当富电子的NaN_3与CoPz(BuS)_8在轴向配位并负载到Al_2O_3上时,CoPz(BuS)_8的紫外-可见光谱B带红移28 nm,Q带红移19nm,FTIR在2122 cm~(-1)出现一个-N=N~+=N~-特征吸收峰,临近S原子的烷基链-CH_2-的核磁峰从3.17 ppm移向低场4.17ppm,表明N_3~-配位成功.利用ESR自由基捕获技术发现,该复合催化剂能活化分子氧,产生比复合催化剂CoPz(BuS)_8/Al_2O_3更多的O_2~-和HO~·等活性物种.在pH=4和pH=7水溶液中的反应明显偏离了一级反应动力学,促进RhB的快速降解,在pH=4时80 min内降解率达到77.6%,之后因RhB浓度迅速降低而慢下来.同时,在pH=7和pH=9时经12 h降解率也分别达到81.7%和74.3%.RhB降解产物主要有N,N-二乙基-N-乙基罗丹明、N,N-二乙基罗丹明、N-乙基罗丹明和罗丹明.其中第一个产物是主要中间体,随后被活性氧物种分裂成小分子和矿化.比较了不同pH媒介中三个复合催化剂的活性,发现酸性条件有利于光催化反应.这是因为在酸性溶液中产生的活性物种比在中性和碱性溶液中多,且随着反应时间增加而增加所致.而在中性和碱性条件下,活性物种改变很少.稳定性实验表明,复合催化剂是稳定的,可以重复使用,复合催化剂CoPz(BuS)_8/SiO_2@Fe_3O_4重复使用7次后活性基本保持不变.  相似文献   

17.
杂原子共掺杂碳材料在过硫酸盐活化领域具有广阔的应用前景. 本工作通过两步煅烧法合成了氮氯共掺杂ZIF-8衍生多孔碳材料(NClC), 并以苯酚为目标污染物, 考察其活化过一硫酸盐(PMS)的催化性能, 结果表明, 30 min内, 0.04 g/L NClC900活化0.3 g/L PMS可去除水中97.7%的苯酚(50 mg/L), 且总有机碳去除率可达72.4%; NClC900/PMS体系具备优异的酸碱耐受性(pH=3~9)和抗干扰能力, 无机阴离子和腐植酸对其影响较小, 且该体系还可有效去除水中的染料、抗生素、酚类及农药等有机污染物; 循环实验结果表明, NClC900在重复使用4次后其苯酚去除率可达72.1%; 猝灭实验、电子顺磁共振和电化学分析表明1O2和表面结合SO4•-是导致苯酚降解的主要活性物种, 而NClC900中的石墨N、C—Cl是产生1O2和表面结合SO4•-的关键活性位点.  相似文献   

18.
合成了Fe-Mo-Zr杂多酸盐催化剂,并利用红外光谱(IR)和X射线衍射(XRD)对制得的产物进行了表征,研究了Fe-Mo-Zr杂多酸盐超声降解模拟酸性绿B(AGB)染料废水的效果.结果表明,合成的杂多酸盐具有Keggin型结构,催化剂的投加量、染料的初始浓度及初始pH值、超声频率及超声时间都对降解效果产生一定的影响.当染料浓度为10mg/L,催化剂的投加量为0.6g/L时,在pH为5.0的条件下,用40kHz超声辐射60min,降解率最高可达93.18%.通过动力学分析:降解反应符合一级反应动力学模型,速率常数随初始浓度的增加而减小.  相似文献   

19.
以半胱氨酸为配体, 采用一锅法简便合成了亲水性的FePt纳米颗粒(NPs). 超小的FePt NPs对水中常见有机污染物表现出良好的催化降解性能, 以NaBH4为还原剂时可实现对染料罗丹明B(RhB)和有害物质4-硝基苯酚(4-NP)的有效还原; 以H2O2为氧化剂时可实现亚甲基蓝(MB)的高效降解. 实验结果表明, FePt NPs对3种有机污染物的降解率均高于90%. 对FePt原子对之间的协同催化机理进行了探讨, 揭示了不同反应体系中微观反应历程和催化机理的区别. 磁性测试结果表明, FePt催化剂可以通过外加磁场进行收集并重复利用, 解决了催化剂二次污染问题. 该研究为设计合成绿色环保催化剂提供了思路.  相似文献   

20.
选用共沉淀法以Fe,Mn和Ce三元复合氧化物为活性组分,以Ti O_2为载体,制备出一种铁基中低温SCR脱硝催化剂Fe_2O_3-Mn O_2-Ce O_2/Ti O_2.将制备的铁基中低温SCR脱硝催化剂进行脱硝活性模拟测试,结果表明在150℃~250℃温度区间内,掺杂含量不同的Fe_2O_3-Mn O_2-Ce O_2/Ti O_2复合氧化物催化剂大多都具有持续稳定的脱硝性能,催化效率最高可稳定在91%以上.同时,采用SEM,XRD,TG和EDS等催化剂表征手段,详细分析了其组分分布,空隙结构与催化性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号