首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对吸气式高超声速飞行器而言,物面热流和摩阻的准确预测对飞行器设计及安全十分关键.介绍采用CFD准确预测气动力和气动热的方法,包括流动的控制方程、湍流模型及湍流的先进壁面函数边界条件,介绍流动的数值求解方法.对典型超声速层流和湍流流动的摩擦阻力和热流进行详细的验证与确认,考察CFD工具在使用先进壁面函数边界条件后,湍流计算的法向网格无关性能力.对设计的一种吸气式高超声速飞行器的气动力和气动热进行数值模拟,为飞行器的气动设计及热防护提供了可靠的数据.  相似文献   

2.
This paper investigates combined heat and mass transfer by mixed magneto-convective flow of an electrically conducting flow along a moving radiating vertical flat plate with hydrodynamic slip and thermal convective boundary conditions. The governing transport equations are converted into a system of coupled nonlinear ordinary differential equations with prescribed boundary conditions using similarity variables developed by Lie group theory. The transformed nondimensional boundary value problem is then solved numerically with MAPLE13 quadrature. Excellent correlation with previous nonmagnetic, no-slip studies is achieved. Surface shear stress function and local Nusselt number (heat transfer gradient at the wall) are increased with Richardson number, whereas local Sherwood number is found to initially decrease then subsequently increase. The “thermally thick” scenario (Biot number > 0.1) is investigated and increasing Biot number is observed to enhance shear stress function (skin friction), local Nusselt number, and local Sherwood number. Increasing thermal radiation flux increases thermal boundary layer thickness as does increasing the magnetic field effect. Increasing hydrodynamic slip parameter reduces skin friction but enhances local Nusselt and Sherwood numbers. The study has applications in high-temperature polymeric synthesis and magnetic field flow control.  相似文献   

3.
This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4 th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.  相似文献   

4.
The analysis of a viscous fluid flow and heat transfer is carried out under the influence of a constant applied magnetic field over a curved stretching sheet. Heat transfer analysis is carried out for two heating processes, namely, prescribed surface temperature (PST) and prescribed heat flux (PHF). The equations governing the flow are modeled in a curvilinear coordinate system (r, s, z). The nonlinear partial differential equations are then transformed to nonlinear ordinary differential equations by using similarity transformations. The obtained system of equations is solved numerically by a shooting method using Runge-Kutta algorithm. The interest lies in determining the influence of dimensionless radius of curvature on the velocity, temperature, skin friction, and rate of heat transfer at the wall prescribed by the Nusselt number. The effects of Hartmann number are also presented for the fluid properties of interest.  相似文献   

5.
This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.  相似文献   

6.
In this paper, the classical von Kármán swirling flow problem due to a rotating disk is modeled and studied for the rate type Maxwell nanofluid together with heat and mass transfer mechanisms. The model under consideration predicts the relaxation time characteristics. The novel aspects of thermophoresis and Brownian motion features due to nanoparticles are investigated by employing an innovative Buongiorno’s model. The analysis further explores the impact of linear Rosseland radiation on heat transfer characteristics. The concept of boundary layer approximations is utilized to formulate the basic governing equations of Maxwell fluid. The dimensionless form of a system of ordinary differential equations is obtained through similarity approach adopted by von Kármán. The system of equations is integrated numerically in domain [0,∞) by using bvp midrich scheme in Maple software. The obtained results intimate that higher rotation raises the radial and angular velocity components. The nano-particles concentration enhances with Brownian motion parameter. Further, the heat transfer rate at the disk surface diminishes with thermophoresis parameter. The achieved numerical computations of velocity profiles, friction coefficient and Nusselt number are matched in limiting cases with previously published literature and an outstanding agreement is observed.  相似文献   

7.
The paper investigates the effects of heat transfer in MHD flow of viscoelastic stratified fluid in porous medium on a parallel plate channel inclined at an angle θ. A laminar convection flow for incompressible conducting fluid is considered. It is assumed that the plates are kept at different temperatures which decay with time. The partial differential equations governing the flow are solved by perturbation technique. Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various parameters like stratification factor, magnetic field parameter, Prandtl number on temperature field, heat transfer, skin friction, flow flux, velocity for both the fluid and particle phases are displayed through graphs and discussed numerically.  相似文献   

8.
The influence of mixed convection boundary layer flow of a viscoelastic fluid over an isothermal horizontal circular cylinder has been analyzed. The boundary layer equations governing the problem are reduced to dimensionless nonlinear partial differential equations and then solved numerically using Keller-box method. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against curvature parameter. Effects of mixed convection parameter and radiation-conduction parameter on skin friction coefficient and Nusselt number are illustrated through graphs and table. The boundary layer separation points along the surface of cylinder are also calculated with/without radiation, and a comparison is shown. The presence of radiation helps to reduce the skin friction coefficient in opposing flow case and enhances it for assisting flow case. The increase in value of radiation-conduction parameter helps increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids. The boundary layer separation delays due to thermal radiation.  相似文献   

9.
A novel methodology for the simulation of 2D thermohaline double diffusive processes, driven by heterogeneous temperature and concentration fields in variable-density saturated porous media, is presented. The stream function is used to describe the flow field and it is defined in terms of mass flux. The partial differential equations governing system is given by the mass conservation equation of the fluid phase written in terms of the mass-based stream function, as well as by the advection–diffusion transport equations of the contaminant concentration and of the heat. The unknown variables are the stream function, the contaminant concentration and the temperature. The governing equations system is solved using a fractional time step procedure, splitting the convective components from the diffusive ones. In the case of existing scalar potential of the flow field, the convective components are solved using a finite volume marching in space and time (MAST) procedure; this solves a sequence of small systems of ordinary differential equations, one for each computational cell, according to the decreasing value of the scalar potential. In the case of variable-density groundwater transport problem, where a scalar potential of the flow field does not exist, a second MAST procedure has to be applied to solve again the ODEs according to the increasing value of a new function, called approximated potential. The diffusive components are solved using a standard Galerkin finite element method. The numerical scheme is validated using literature tests.  相似文献   

10.
This article scrutinizes the features of viscous dissipation in the stagnation point flow past through a linearly stretched Riga wall by implementing Cattaneo-Christov heat flux model. Viscous dissipation is carried out in Cattaneo-Christov diffusion analysis for the first time in this letter. As a result of Cattaneo-Christov model, some extra terms of viscous dissipation are appeared in the energy equation. These extra terms of viscous dissipation are missing in the literature. On the utilization of suitable transformations, the equations governing the problem are reduced under the boundary layer approximation into the non-linear and dimensionless ordinary differential equations. Convergent approach is utilized to solve the dimensionless governing equations. The solution thus acquired is used to highlight the effects of emerging parameters on velocity distribution and fluid's temperature through the graphs. Features of the drag force (or skin friction co-efficient) are graphically interpreted. It is noticed that the presence of modified Hartman number helps to reduce the fluid's temperature but enhances the velocity profile. Further an enlargement in the value of thermal time relaxation parameter helps to decrease the temperature distribution.  相似文献   

11.
This paper presents a numerical solution for the steady mixed convection magnetohydrodynamic (MHD) flow of an electrically conducting micropolar fluid over a porous shrinking sheet. The velocity of shrinking sheet and magnetic field are assumed to vary as power functions of the distance from the origin. A convective boundary condition is used rather than the customary conditions for temperature, i.e., constant surface temperature or constant heat flux. With the aid of similarity transformations, the governing partial differential equations are transformed into a system of nonlinear ordinary differential equations, which are solved numerically, using the variational finite element method (FEM). The influence of various emerging thermophysical parameters, namely suction parameter, convective heat transfer parameter, magnetic parameter and power index on velocity, microrotation and temperature functions is studied extensively and is shown graphically. Additionally the skin friction and rate of heat transfer, which provide an estimate of the surface shear stress and the rate of cooling of the surface, respectively, have also been computed for these parameters. Under the limiting case an analytical solution of the flow velocity is compared with the present numerical results. An excellent agreement between the two sets of solutions is observed. Also, in order to check the convergence of numerical solution, the calculations are carried out by reducing the mesh size. The present study finds applications in materials processing and demonstrates excellent stability and convergence characteristics for the variational FEM code.  相似文献   

12.
The present paper studies the flow and heat transfer of the hybrid nanofluids flows induced by a permeable power-law stretching/shrinking surface modulated orthogonal surface shear. The governing partial differential equations were converted into non-linear ordinary differential equations by using proper similarity transformations. These equations were then solved applying a numerical technique, namely bvp4c solver in MATLAB. Results of the flow field, temperature distribution, reduced skin friction coefficient and reduced Nusselt number were deduced. It was found that increasing mass flux parameter slows down the velocity and, hence, decreases the temperature. Furthermore, on enlarging the stretching parameter, the velocity and temperature increases and decreases, respectively. In addition, that the radiation parameter can effectively control the thermal boundary layer. Finally, the temperature decreases when the values of the temperature parameter increases. We apply similarity transformation in order to transform the governing model into a system of ODEs (ordinary differential equations). Numerical solutions for particular values of involved parameters are in very good agreement with previous calculations. The most important and interesting result of this paper is that for both the cases of shrinking and stretching sheet flows exhibit dual solutions in some intervals of the shrinking and stretching parameter. In spite of numerous published papers on the flow and heat transfer over a permeable stretching/shrinking surface in nanofluids and hybrid nanofluids, none of the researchers studied the present problem. Therefore, we believe that the results of the present paper are new, and have many industrial applications.  相似文献   

13.
The current study centralizes on unsteady free convection slip flow of Casson fluid past a vertical permeable plate with Hall current, radiative heat flux, and variable suction. The nonlinear convection is subjected to quartic order. Perturbation method is used to convert the non-linear coupled partial differential equation of the momentum and energy to a system of ordinary differential equations. The dimensionless governing equations are solved analytically for velocity and temperature profiles. The graphs are plotted for sundry parameters for variations in the distinct flow fields w.r.t distance from the plate. Variation in the skin friction for the axial and transverse cases are presented in the form of graphs for various parameters. It is observed that with the increase in the order of non-linear convection and value of radiation parameter, the velocity field increases in Casson fluid. The increase in heat absorption parameter and Prandtl number decreases the temperature profile and increase in radiative heat flux parameter increases the temperature profile.  相似文献   

14.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid bounded by a vertical infinite surface under the action of a transverse magnetic field. Approximate solutions of the coupled nonlinear governing equations are obtained for different values of the microrotation- and the magnetic-parameters. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, angular velocity, temperature and concentration profiles are shown graphically. The numerical values of the skin friction, the wall couple stress, the rate of heat transfer and the concentration gradient at the wall are entered in tables.  相似文献   

15.
The current article investigates the impact of the bioconvection in an unsteady flow of magnetized Cross nanofluid with gyrotactic microorganisms and activation energy over a linearly stretched configuration. The analysis has been performed by utilizing the realistic Wu's slip boundary and zero mass flux conditions. The effects of nonlinear thermal radiation and the activation energy are also addressed. The governing flow equations are deduced to a dimensionless form by considering suitable transformations which are numerically targeted via a shooting algorithm. The physical visualization of each physical parameter governing the flow problem has been displayed graphically for distribution of velocity, temperature, concentration and motile microorganisms. The numerical treatment for the variation of skin friction coefficient, local Nusselt number, local Sherwood number and motile density number is performed in tabular forms.  相似文献   

16.
A steady magnetohydrodynamic (MHD) flow past a radially stretching or shrinking disk is investigated. The governing partial differential equations are transformed into a set of ordinary (similarity) differential equations by a similarity transformation. These equations along with the corresponding boundary conditions are solved numerically using the boundary value problem solver (bvp4c) in Matlab. The effects of magnetic field and suction on the shear stress and the heat transfer are analyzed and discussed. It is found that both parameters affect more in the shrinking region. The increase in the magnetic parameter results in the increase of the skin friction coefficient but decrease in the local Nusselt number.The skin friction coefficient and the local Nusselt number increase as suction increases.  相似文献   

17.
Here Darcy–Forchheimer 3D stretching flow of nanoliquid in the presence of convective condition and homogeneous–heterogeneous reactions is analyzed. Impacts of thermophoresis, Brownian diffusion and zero nanoparticles mass flux condition are considered. Adequate transformation procedure give rise to system in terms of ordinary differential equations. The governing mathematical system has been tackled by optimal homotopic technique. Graphical results have been presented for temperature and concentration dsitributions. Numerical benchmark is provided to study the values of skin friction coefficients and local Nusselt number. Skin friction coefficients are declared increasing functions of porosity and Forchheimer parameters. Furthermore the local Nusselt number is reduced for larger values of porosity and Forchheimer parameters.  相似文献   

18.
临近空间高超声速飞行器流场蕴含着复杂的非线性流动机理与丰富的热化学非平衡流动现象, 基于Newton摩擦定律和Fourier热传导定律的Navier-Stokes(N-S)方程不足以描述高超声速飞行器从连续流到稀薄流的多尺度非平衡现象。非线性耦合本构关系(nonlinear coupled constitutive relations, NCCR)作为一种全新的本构方程体系, 在严格满足热力学熵条件的基础上, 巧妙地构建了应力与热流的非线性表达形式。然而, NCCR方程的强非线性耦合特性是求解过程的一大难题。为了克服这一技术瓶颈, 提出了混合迭代算法, 为实现NCCR方程的高效稳定求解提供了坚实的理论基础。在该理论研究的基础上, 考虑到原始NCCR方程对热通量演化方程的简化处理, 降低了方程的计算精度, 提出了改进的NCCR+方程。该方程在强激波压缩区域和膨胀区域表现出比传统NCCR方程更高的计算精度与更强的非平衡流动模拟能力。同时, 为了解决临近空间高超声速空气动力学的多尺度与多物理效应耦合难题, 提出了NCCR与转动非平衡的耦合计算模型, 拓展了NCCR方程在双原子气体中的模拟能力。为了揭示稀薄气体效应与真实气体效应的耦合作用机理, 进一步建立了NCCR与热化学反应的耦合计算方法。大量研究结果表明, 考虑多物理效应的NCCR方程在低Kn下能够恢复到与N-S方程一致的解。随着Kn的增加, 流场的非平衡程度逐渐增强, 其结果与N-S方程差异显著, 而与DSMC方法计算结果和实验数据具有更好的一致性。   相似文献   

19.
20.
Numerical modeling of two-dimensional, unsteady, laminar, isothermal heat and mass transfer by MHD free convection flow past an impulsively started vertical cylinder in the presence of Dufour and Soret effects is considered. The governing equations of the flow problems, valid in the free convection regime, are transformed into a nondimensional form using appropriate nondimensional parameters. These equations are solved numerically by an efficient, implicit, iterative, finite-difference scheme of Crank-Nicolson type. A parametric study illustrating the influence of the magnetic field, Grashof number, and the Dufour and Soret numbers on the fluid velocity, temperature, and concentration, as well as the local and average skin friction, Nusselt and Sherwood numbers is conducted. The obtained results are shown graphically and the physical aspects of the problem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号