首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的MgAl2O4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在MgAl2O4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/MgAl2O4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60–150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比MgAl2O4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,MgAl2O4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

2.
张波  汤明慧  袁剑  吴磊 《催化学报》2012,33(6):914-922
采用浸渍法制备了Si-MCM-41和Al-MCM-41(Si/Al=50)介孔分子筛,SiO2,γ-Al2O3及MgO等负载的ZrO2催化剂,考察了其在以异丙醇为氢源苯甲醛Meerwein-Ponndorf-Verley(MPV)还原反应中的催化活性,并与纯ZrO2的催化活性进行对比.同时,采用X射线衍射、N2吸脱附法、X射线光电子能谱、紫外-可见漫反射光谱和吡啶原位吸附红外光谱等手段表征了催化剂.结果表明,ZrO2负载于Si-MCM-41,Al-MCM-41和SiO2后,催化活性明显提高,这归因于ZrO2与载体间存在强相互作用形成ZrOSi键,使催化剂表面ZrOH数量显著增多,Lewis酸中心强度增强,并出现Brnsted酸中心,三种催化剂的活性高低次序是5%ZrO2/Si-MCM-41>5%ZrO2/Al-MCM-41>5%ZrO2/SiO2.而5%ZrO2/Al2O3和5%ZrO2/MgO基本无催化活性,可归因为ZrO2与γ-Al2O3的弱相互作用使5%ZrO2/Al2O3的酸性与γ-Al2O3类似,ZrO2与MgO的强相互作用使5%ZrO2/MgO基本无酸性.  相似文献   

3.
在加压固定床反应器上研究了Fe催化剂在不同比表面积煤焦中分散性对催化加氢气化性能的影响,利用XRD、BET、H2-TPR、FT-IR、TEM、拉曼光谱对煤焦及催化剂进行了分析表征。结果表明,煤焦活性位点和石墨化程度并非影响催化气化反应的唯一因素,而催化剂的分散性对反应影响更大。煤焦的比表面积越大,Fe催化剂在煤焦表面的分散更均匀,催化剂活性组分平均晶粒粒径越小,并可以促进煤催化加氢气化中间相产物Fe3C的生成,甲烷收率越高。对于比表面积较高的900-char,在氢气压力为2 MPa,温度为750 ℃,Fe负载量为5%(质量分数)时,催化加氢气化甲烷收率可达53%。在900-char上考察了Fe催化剂负载量对催化加氢气化的影响,甲烷收率呈先增加后降低的趋势,Fe负载量存在饱和点。  相似文献   

4.
综述了近年来锇络合物用于催化烯烃加氢和异构化反应的研究进展.Os催化剂在H_2分子和转移加氢二个方面用于烯烃加氢反应均表现出较高的活性和选择性.因此它有望成为有机合成中的一个强有力的工具.  相似文献   

5.
采用浸渍法制备了Si-MCM-41和Al-MCM-41(Si/Al=50)介孔分子筛,SiO2,γ-Al2O3及MgO等负载的ZrO2催化剂,考察了其在以异丙醇为氢源苯甲醛Meerwein-Ponndorf-Verley(MPV)还原反应中的催化活性,并与纯ZrO2的催化活性进行对比.同时,采用X射线衍射、N2吸脱附法、X射线光电子能谱、紫外-可见漫反射光谱和吡啶原位吸附红外光谱等手段表征了催化剂.结果表明,ZrO2负载于Si-MCM-41,Al-MCM-41和SiO2后,催化活性明显提高,这归因于ZrO2与载体间存在强相互作用形成ZrOSi键,使催化剂表面ZrOH数量显著增多,Lewis酸中心强度增强,并出现Brnsted酸中心,三种催化剂的活性高低次序是5%ZrO2/Si-MCM-415%ZrO2/Al-MCM-415%ZrO2/SiO2.而5%ZrO2/Al2O3和5%ZrO2/MgO基本无催化活性,可归因为ZrO2与γ-Al2O3的弱相互作用使5%ZrO2/Al2O3的酸性与γ-Al2O3类似,ZrO2与MgO的强相互作用使5%ZrO2/MgO基本无酸性.  相似文献   

6.
采用共沉淀法制备了CeO2,Co3O4和一系列Co3O4/CeO2复合氧化物催化剂,在400°C下含SO2的氧化气氛中对催化剂进行了硫中毒处理,通过原位红外光谱、X射线衍射、程序升温脱附和X射线光电子能谱对新鲜和硫中毒的样品进行了表征.结果表明,所有测试的硫中毒样品上均形成了硫酸盐,CeO2上累积的硫酸盐明显比Co3O4上的多,Co3O4/CeO2复合氧化物在硫中毒过程中形成了硫酸钴和硫酸铈.对新鲜和硫化样品在NO/O2气氛下进行了催化炭黑燃烧实验,发现Co3O4/CeO2复合氧化物的活性和抗硫性能优于CeO2,但抗硫性能低于Co3O4.  相似文献   

7.
采用共沉淀法制备了不同CuO和WO3含量的CuO-WO3-ZrO2催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 X射线荧光光谱(XRF)、 N2气物理吸附、 氢气程序升温还原(H2-TPR)、 X射线光电子能谱(XPS)及程序升温脱附(TPD)等手段对催化剂的结构和表面性质进行了表征. 结果表明, WO3的引入可以调变ZrO2的晶型, 从而使催化剂的比表面积和孔径发生变化, 促进CuO在催化剂表面的分散, 并影响催化剂的酸碱性. 在苯甲醛加氢制备苯甲醇反应中, 以CuO质量分数为18%, WO3质量分数为10%的CuO-WO3-ZrO2为催化剂时苯甲醛单程转化率达到92.03%, 产物苯甲醇的选择性为94.76%.  相似文献   

8.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe_2 O_3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe_2 O_3(S))相比,氧化铁纳米棒(α-Fe_2 O_3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe_2 O_3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明, Au/α-Fe_2 O_3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现, Au/α-Fe_2 O_3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe_2 O_3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明, Au/α-Fe_2 O_3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

9.
利用溶胶-凝胶法合成纳米NiCo2O4,并利用X射线衍射和透射电镜分析其结构和表面形貌.结果表明NiCo2O4具有尖晶石结构,平均粒径约为15 nm.利用电势线性扫描和恒电势法测定了其对H2O2在碱性溶液中电化学还原反应的催化性能.发现NiCo2O4对H2O2电化学还原具有高的催化活性和稳定性,在H2O2浓度低于0.6 mol.L-1时,其电化学还原反应主要通过直接还原途径进行.以NiCo2O4为阴极催化剂的Al-H2O2半燃料电池在室温下的开路电压达1.6 V;在1.0 mol.L-1 H2O2溶液中,峰值功率密度达209 mW.cm-2,此时电流密度为220mA.cm-2.  相似文献   

10.
制备了一系列添加不同含量F助剂的NiWF(x)/γ-Al_2O_3催化剂,并采用X射线衍射(XRD)、N_2吸附、X射线光电子能谱(XPS)、NH_3-TPD和高分辨透射电子显微镜(HRTEM)等手段对其结构和物化性质进行了表征,同时在固定床反应器上考察了其加氢脱氮(HDN)和加氢脱硫(HDS)活性,反应原料为中国内蒙中低温煤焦油。结果显示,随着F含量的增加,催化剂孔容和孔径没有明显变化,但比表面积减小。催化剂在643 K下硫化6 h后,其硫化度随着F含量的增加而减少,强酸位数和总酸位数呈现先略微增加后减少的趋势。高分辨透射电子显微镜测试表明,硫化后的催化剂中含有具有典型层状结构的WS_2。F含量对NiWF(x)/γ-Al_2O_3的煤焦油HDN性能有较大影响,但对其HDS活性影响很弱。  相似文献   

11.
近年来,柴油发动机产生的废气污染己成为一个严重问题,环境法规对燃油中的硫含量限制越来越严格.因此,开发高效的深度加氢脱硫催化剂成为当今的热门课题之一.在柴油馏分中,由于存在空间位阻作用,二苯并噻吩(DBT)及其烷基取代的衍生物是最难脱除的.传统的加氢脱硫(HDS)催化剂通常是将活性金属担载在γ-Al_2O_3上.近年来,介孔材料如MCM-41,SBA-15,HMS,KIT-1和KIT-6等也被用作加氢脱硫催化剂载体,其大的比表面积有利于活性组分分散,大的规则孔径有利于反应物和产物扩散.其中,KIT-1介孔分子筛具有三维短蠕虫状介孔结构和大的比表面积,其酸性和水热稳定性都高于MCM-41.然而,由于无定形的孔壁使得介孔分子筛的酸性和水热稳定性较差,限制了其在石油化工领域的应用.而介微孔复合分子筛兼具了微孔分子筛酸性强、水热稳定性好和介孔分子筛的孔道优势,因此一经出现就引起了研究者广泛关注.有研究认为,增加载体酸性有利于加氢及促进C-S键氢解反应.载体中的微孔可高效吸附氢分子,降低HDS过程所需的温度和压力,实现温和条件下燃油超深度脱硫.目前,已有研究者将Y-MCM-41,介孔ZSM-5及Beta-KIT-6等多级孔分子筛用作催化剂载体,并进行了加氢脱硫性能研究,取得了良好效果.我们曾利用双模板剂一步晶化法水热合成了介微孔复合分子筛ZK-1.该分子筛既具有与KIT-1相似的短蠕虫状三维介孔孔道,又具有ZSM-5的微孔结构.其介孔孔径为2.7 nm,微孔孔径为0.6 nm.该分子筛具有良好的水热稳定性和较高的酸性.本文在上述研究基础上,以不同硅铝比的ZK-1为载体通过过量浸渍法担载Co,Mo活性组分制备了CoMo/ZK-1(Si/Al=30)和CoMo/ZK-1(Si/Al=40)催化剂,并以相同方法制备了CoMo/γ-Al_2O_3,CoMo/AlKIT-1,CoMo/ZSM-5和CoMo/Mix(等量的ZSM-5和AlKIT-1混合物)催化剂作为对比.催化剂的N_2吸附和NH_3程序升温脱附表征结果表明,CoMo/ZK-1具有高于其他催化剂的比表面积(约700 m~2/g)和介微孔结构,介孔孔径和微孔孔径分别为2.3 nm和0.6-1 nm.CoMo/ZK-1的酸量大于相同硅铝比的CoMo/AlKIT-1,这是由于ZK-1的介孔孔壁上含有沸石结构单元.通过H_2程序升温还原表征可知,CoMo/ZK-1的高温氢耗峰面积较CoMo/γ-Al_2O_3和CoMo/ZSM-5相比明显减小,表明在CoMo/ZK-1上难还原的组分数量减少,载体与金属之间的相互作用减弱,这有利于金属组分的还原和硫化.紫外-可见漫反射光谱表征结果表明,在ZSM-5表面形成了大量的聚合态氧化钼物种,这是由于载体表面积小,金属组分分散不均匀.Co_2AlO_4或Co_2SiO_4相的出现是由于载体与金属间存在较强的相互作用.以ZK-1和AlKIT-1为载体的催化剂则避免了该情况的发生.从高分辨透射电镜照片可知,MoS_2在ZK-1表面分散很均匀,其堆垛层数(2.5-2.7层)和片晶长度(3.9-4.0 nm)都达到较理想的数值,有利于形成更多的Co-Mo-S(Ⅱ)活性相.以二苯并噻吩为模型化合物,采用固定床反应器考察了上述6种催化剂的加氢脱硫活性.催化剂的脱硫率从高到低依次为:CoMo/ZK-1(40)CoMo/ZK-1(30)CoMo/γ-Al_2O_3CoMo/ZSM-5CoMo/MixCoMo/AlKIT-1.在较温和的反应条件(320℃,3MPa,WHSV=5h~(-1))下,CoMo/ZK-1对DBT的脱硫率达到93%以上.其原因主要是:(1)ZK-1的大比表面积使Co,Mo活性组分高度分散在载体表面;(2)载体与金属之间较适中的相互作用有利于活性组分的还原与硫化;(3)ZK-1含有的沸石结构单元使其比AlKIT-1具有更多的酸中心,有利于提高HDS反应活性.  相似文献   

12.
采用等体积共浸渍法制备了CuO-CeO_2整体式催化剂,评价了催化剂对乙酸乙酯、异丙醇及甲苯的催化燃烧性能。采用N2吸附-脱附、X射线衍射(XRD)、氢气程序升温还原(H_2-TPR)、氨气程序升温脱附(NH_3-TPD)以及挥发性有机化合物脱附等手段对催化剂进行了表征。表征数据显示,氧化铜以高分散态均匀分散存在于载体表面,氧化铈则是小的纳米颗粒,氧化铈颗粒粒径随着Cu/Ce物质的量比的减小而增大。添加铈氧化物会显著增加总酸量,特别是路易斯酸酸位的量,同时增强了乙酸乙酯和异丙醇的吸附量,吸附量的增加提高了催化剂对乙酸乙酯和异丙醇的催化燃烧性能。从甲苯的催化燃烧实验可以看出,大量添加CeO_2稍微增加了甲苯的吸附容量,减弱了催化剂的还原性、降低了活性氧的含量,最终导致甲苯的低转化率。催化行为由氧化铜、氧化铈以及载体三者之间的共同作用决定,这三者的协同作用不仅影响着表面氧的活性同时影响着催化剂对甲苯的吸附能力。  相似文献   

13.
燃煤电厂及工业窑炉的氮氧化物减排是改善空气质量的关键.现阶段选择性催化还原氮氧化物是最有效的技术途径,核心是采用以TiO_2为载体的钒基催化剂净化烟气.催化剂的活性是决定烟气净化效率的重要因素.近些年的研究主要集中在活性组分的替换上,但是由于其成本高昂,抗水抗硫性能较差,在实际中使用的效果不佳.本文从载体入手,制备了新型TiO_2载体,并采用特殊制备手段研发了新型高比表面积钒钛体系催化剂.通过对载体和催化剂的物化表征,研究了高比表面积TiO_2载体对于活性组分钒在表面分散的促进作用,及分散性的提高对氧化性和酸性的影响.所制新型TiO_2载体比表面积达到380.5 m~2/g,较商业化TiO_2载体提高了5倍.以此为载体,采用超声浸渍法和分段烧结的热处理方式,制备了钒负载量为5 wt%的新型钒钛催化剂.结果发现,高比表面载体显著提高了钒基催化剂比表面积为117.7 m~2/g,比传统钒钛催化剂提高了38%.计算结果表明,这种方式还提高了钒物种在载体表面的分散性.XRF结果表明,超声浸渍法和普通浸渍法均可将5 wt%的钒成功地负载到了载体上.通过模拟实际烟气成分对催化剂的脱硝效果进行了测试,结果表明,所制催化剂具备更宽的温度窗口及更好的N_2选择性,NO_x转化率在200–450°C时能保持在80%以上,比传统方法制备的催化剂温度窗口宽100°C.且N_2选择性在400°C以上时也明显更高.对两种催化剂样品的抗水抗硫能力进行了考察,发现在烟气中存在H_2O或SO_2时,高比表面积催化剂样品相较传统方法制备的催化剂具有更高的活性.Raman结果发现,在传统商业载体上钒物种由于分散不充分,更易在烧结过程中形成V-O-V物种,从而降低了催化剂的氧化还原性.而新型催化剂表面的V-O-Ti及V=O物种数量更多,这些物种活性更高,从而使得催化剂在低温下具有更高的NO_x转化率.采用NH_3-TPD,H_2-TPR和XPS技术研究了活性提高与催化剂结构的关系.结果发现,高比表面积载体通过对钒物种的分散作用,在载体表面由于二氧化钛载体的孔结构和钒物种的高活性,也使得该催化剂具有较高的酸量和氧化还原性.本文为制备新型烟气脱硝催化剂提供了理论依据,该技术方法具有较高的应用价值.  相似文献   

14.
采用多步法依次将制备的Fe3O4纳米颗粒和Pt纳米颗粒负载到多壁碳纳米管(MCNT)上得到Pt/Fe3O4-MCNT磁性催化剂,以X射线衍射(XRD)、透射电镜(TEM)、超导量子干涉磁强计(SQUID)和热重-差热分析(TG-DTA)对Pt/Fe3O4-MCNT磁性催化剂的结构和磁性质进行了表征。研究发现预制备的Fe3O4纳米颗粒与Pt纳米颗粒均匀地分散于MCNT上,新制备以及多次使用后的Pt/Fe3O4-MCNT室温下都具有良好的超顺磁性。研究了Pt/Fe3O4-MCNT磁性催化剂上的肉桂醛选择性加氢反应,结果显示催化剂具有良好的C=O加氢活性,肉桂醛转化率在50%左右时,肉桂醇选择性可达96%以上。尺寸均一的Pt粒子均匀的分散在催化剂上可能是催化剂具有良好的C=O加氢选择性的重要原因。在外加磁场作用下催化剂可以高效地从液相反应体系中分离,经多次循环使用后仍具有良好的催化性能。  相似文献   

15.
研究了H2O对Ni/Mg Al O催化剂上丙酮加氢为异丙醇的催化反应的影响.结果发现,在丙酮中添加少量H2O可提高丙酮转化率,但超过5%的H2O量则会显著降低催化剂活性.吸附量热结果表明,催化剂表面吸附少量H2O会明显降低异丙醇的吸附热,但对丙酮吸附热的影响较小,这也许是反应体系中少量的H2O能促进丙酮加氢活性的原因之一.当催化剂表面吸附较多H2O后,丙酮、异丙醇和H2的吸附热都降低了,因此反而抑制了丙酮的加氢反应.此外,红外光谱结果表明,预吸附水抑制了催化剂表面异丙醇脱氢生成丙酮,并抑制吸附的丙酮在表面生成烯醇盐或异丙叉丙酮等物种,这也许是少量水能促进丙酮加氢生成异丙醇的另一个重要原因.  相似文献   

16.
以平衡吸附过氧钨酸的水合氧化锆为前驱体,经焙烧得到WO_3-ZrO_2固体酸,并采用XRD、UV-vis、NH_3-TPD等手段考察了过氧钨酸吸附液浓度及焙烧温度对WO_3-ZrO_2固体酸组成、结构及酸性的影响。通过BET、H_2-TPR、H_2-TPD等表征手段和正戊烷临氢异构反应,考察了负载铂后相应催化剂的结构、还原与氢吸附性质及其催化正戊烷临氢异构反应的性能。结果表明,焙烧温度为700℃时,随着吸附液浓度的增加,所得载体酸度及相应催化剂比表面积均先增加后减小,且在吸附液浓度为82 mmol W/L时达到最大值。吸附液浓度为59 mmol W/L时,随着焙烧温度的升高,所得载体四方相氧化锆含量、酸度及相应催化剂比表面积均降低。吸附液浓度为82 mmol W/L、焙烧温度为700℃所得载体负载0.5%(质量分数)铂后催化活性最高。该催化剂在250℃常压临氢操作、n(H_2)/n(n-C_5H_(12))为3、WHSV为1.0 h~(-1)的条件下,催化正戊烷异构反应中异戊烷收率可达57.7%。  相似文献   

17.
针对Pt,Pd对氧气还原(ORR)催化活性随着载体从C到TiO2改变而发生变化的实验现象,采用密度泛函方法(DFT)从理论角度研究了C和TiO2载体对Pt和Pd催化氧还原活性的影响。首先,在外加电场情况下,计算了电子给体(催化剂)与受体(氧气)之间轨道对称性,能级差以及轨道重叠程度。发现与C(110)载体相比,TiO2(110)载体可以有效地增大Pd/TiO2 HOMO轨道的空间尺寸,克服了Pd/C的HOMO与O2的LUMO空间尺寸悬殊,重叠性小,因而电子转移的困难。其次,计算了ORR中间物种(Oads)在不同催化剂表面的吸附能,发现Oads在Pt/TiO2上的吸附能大于Pd/TiO2。计算的差分电子密度与分态密度显示,由于Pt与TiO2(110)表面Ti的强相互作用,增强了Oads的吸附,阻碍了ORR后续反应的进行;而Pd与TiO2表面。的强相互作用,则削弱了中间物种Oads在Pd上的吸附,使ORR后续反应顺利进行,成功地解释了为什么氧还原反应在Pd/TiO2上好于Pt/TiO2上的量子化学根源。研究显示:TiO2担载的Pt、Pd催化剂上催化ORR的活性比C担载的小,既有催化剂颗粒尺度和分散性的原因,也有电子学和量子化学方面的原因,通过增加TiO2载体的氧空位或掺杂以提高TiO2的导电性、提高金属在TiO2载体上的分散度,能够进一步提高Pd/TiO2催化氧还原反应的活性。  相似文献   

18.
氧还原反应(ORR)可能是电催化中最重要的阴极过程.尽管最近几年有关ORR反应的实验和理论研究很多,但ORR反应完整的机理尚未完全阐述清楚.本文总结了在单晶Pt电极上ORR反应研究的最新进展,特别是有关表面电荷的影响和可能的反应路径,并基于这些研究结果给出了ORR反应机理.  相似文献   

19.
采用共沉淀法合成了ZrO_2与Al_2O_3的不同质量比的ZrO_2-Al_2O_3复合氧化物,并以此为载体通过等体积浸渍法制备了1.5%Pt/ZrO_2-Al_2O_3(w/w)催化剂。以C3H6和CO为反应物的催化性能评价显示,在系列催化剂中以Pt/Zr(0.4)-Al催化剂催化氧化活性最为优异,其C3H6和CO的起燃温度(T50)小于125℃,完全转化温度(T90)小于150℃。采用XRD、低温N2吸附、H2-TPR、CO脉冲吸附等分析表征技术探索了催化剂物相结构、比表面积、颗粒尺寸等对催化活性的影响规律。结果发现,ZrO_2-Al_2O_3复合氧化物具有Al_2O_3材料的介孔织构和大比表面积特性,且产生了AlxZr1-xOy固溶体新物相。适当的ZrO_2与Al_2O_3的质量比,是改善Pt与ZrO_2-Al_2O_3的相互作用强度,促进贵金属Pt的分散,提升Pt/ZrO_2-Al_2O_3催化剂的低温氧化活性的关键。  相似文献   

20.
与硫氧化物、氮氧化物、一氧化碳以及悬浮颗粒一样,大部分挥发性有机物(VOCs)污染大气环境.控制VOCs排放有多种方法,其中催化氧化法是一种有效技术,关键在于获得高效催化剂.近年来,负载过渡金属和贵金属催化剂因具有比单纯负载贵金属和单纯负载过渡金属氧化物更好的催化性能而备受关注.在负载贵金属催化剂中,高比表面积载体负载Pt,Pd或Rh催化剂得到广泛而深入的研究,尽管这些催化剂成本较高,但是其对VOCs氧化反应显示了很高的低温催化活性.众所周知,催化活性取决于贵金属和VOCs的种类,不同负载贵金属催化剂对特定反应会表现出不同的催化活性.负载Pt催化剂对长链碳氢化合物和芳香族化合物氧化反应表现出更高的活性.相对于负载贵金属催化剂,负载过渡金属氧化物催化剂不仅具有良好的氧化活性,而且价格低廉.迄今已发现许多过渡金属氧化物(如Co_3O_4,Cr_2O_3和MnO_2等)对典型VOCs氧化反应具有催化活性,其中Co_3O_4的催化活性尤为突出.研究表明,Co_3O_4的性质和分散度是决定其性能的关键因素,制备方法、载体性质和过渡金属氧化物负载量对Co_3O_4的物化性质具有重要影响,而且在负载Pt催化剂中添加金属氧化物能改善其催化性能.尽管多孔氧化铝是一种常用的载体材料,但目前尚无文献报道三维有序大孔-介孔氧化铝负载Co_3O_4和Pt纳米粒子催化剂的制备及其对甲苯氧化反应的催化性能.本文采用聚甲基丙烯酸甲酯微球胶晶模板法、等体积浸渍法和聚乙烯醇保护的硼氢化钠还原法制备了三维有序大孔-介孔(3DOM Al_2O_3)负载Co_3O_4和Pt(xP t/yCo_3O_4/3DOM Al_2O_3,Pt的质量分数(x%)为0-1.4%,Co_3O_4的质量分数(y%)为0-9.2%)纳米催化剂.通过电感耦合等离子体原子发射光谱、X射线衍射、氮气吸附-脱附、扫描电子显微镜、透射电子显微镜、选区电子衍射、X射线光电子能谱及氢气程序升温还原等技术表征了催化剂的物化性质,利用固定床微型石英反应器评价了催化剂对甲苯氧化反应的催化活性.结果表明,xP t/yC o3O4/3DOM Al_2O_3催化剂具有多级孔结构(大孔孔径为180–200 nm,介孔孔径为4–6 nm),比表面积为94-102 m2/g.粒径为18.3 nm的Co_3O_4纳米粒子和粒径为2.3-2.5 nm的Pt纳米粒子均匀分散在3DOM Al_2O_3表面.在xP t/y Co_3O_4/3DOM Al_2O_3催化剂中,1.3Pt/8.9Co_3O_4/3DOM Al_2O_3拥有最高的Oads浓度、最好的低温还原性和最高的甲苯氧化反应催化活性(当空速为20000 mL g~(-1) h~(-1)时,甲苯转化率达90%的反应温度为160 oC).基于催化剂的活性数据和结构表征,我们认为,1.3Pt/8.9Co_3O_4/3DOM Al_2O_3优异的催化性能与其高分散的Pt纳米粒子、高的Oads浓度、好的低温还原性、Pt和Co_3O_4纳米粒子间的强相互作用以及多级孔结构相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号