首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are spin-orbit interaction and spin-spin interaction in a generic post-Newtonian Lagrangian formulation of comparable mass spinning compact binaries. The spin-orbit coupling or the spin-spin coupling plays a quite important role in changing the evolution of the system and may sometime cause chaotic behavior. How do the two types of couplings exert together any influences on chaos in this formulation? To answer it, we simply take the Lagrangian formulation of a special binary system, including the Newtonian term and the leading-order spin-orbit and spin-spin couplings. The key to this question can be found from a Hamiltonian formulation that is completely identical to the Lagrangian formulation. If the Lagrangian does not include the spin-spin coupling, its equivalent Hamiltonian has an additional term(i.e. the next-order spin-spin coupling) as well as those terms of the Lagrangian. The spin-spin coupling rather than the spin-orbit coupling makes the Hamiltonian typically nonintegrable and probably chaotic when two objects spin. When the leading-order spin-spin coupling is also added to the Lagrangian, it still appears in the Hamiltonian.In this sense, the total Hamiltonian contains the leading-order spin-spin coupling and the next-order spin-spin coupling,which have different signs. Therefore, the chaos resulting from the spin-spin interaction in the Legrangian formulations is somewhat weakened by the spin-orbit coupling.  相似文献   

2.
There are spin-orbit interaction and spin-spin interaction in a generic post-Newtonian Lagrangian formu-lation of comparable mass spinning compact binaries. The spin-orbit coupling or the spin-spin coupling plays a quite important role in changing the evolution of the system and may sometime cause chaotic behavior. How do the two types of couplings exert together any influences on chaos in this formulation? To answer it, we simply take the Lagrangian formulation of a special binary system, including the Newtonian term and the leading-order spin-orbit and spin-spin couplings. The key to this question can be found from a Hamiltonian formulation that is completely identical to the Lagrangian formulation. If the Lagrangian does not include the spin-spin coupling, its equivalent Hamiltonian has an additional term (i.e. the next-order spin-spin coupling) as well as those terms of the Lagrangian. The spin-spin coupling rather than the spin-orbit coupling makes the Hamiltonian typically nonintegrable and probably chaotic when two objects spin. When the leading-order spin-spin coupling is also added to the Lagrangian, it still appears in the Hamiltonian. In this sense, the total Hamiltonian contains the leading-order spin-spin coupling and the next-order spin-spin coupling, which have different signs. Therefore, the chaos resulting from the spin-spin interaction in the Legrangian formulations is somewhat weakened by the spin-orbit coupling.  相似文献   

3.
Recently,it has been generally claimed that a low order post-Newtonian(PN)Lagrangian formulation,whose Euler-Lagrange equations are up to an infinite PN order,can be identical to a PN Hamiltonian formulation at the infinite order from a theoretical point of view.In general,this result is difficult to check because the detailed expressions of the Euler-Lagrange equations and the equivalent Hamiltonian at the infinite order are clearly unknown.However,there is no difficulty in some cases.In fact,this claim is shown analytically by means of a special first-order post-Newtonian(1PN)Lagrangian formulation of relativistic circular restricted three-body problem,where both the Euler-Lagrange equations and the equivalent Hamiltonian are not only expanded to all PN orders,but have converged functions.It is also shown numerically that both the Euler-Lagrange equations of the low order Lagrangian and the Hamiltonian are equivalent only at high enough finite orders.  相似文献   

4.
The equations of motion of compact binary systems have been derived in the post-Newtonian (PN) approximation of general relativity. The current level of accuracy is 3.5PN order. The conservative part of the equations of motion (neglecting the radiation reaction damping terms) is deducible from a generalized Lagrangian in harmonic coordinates, or equivalently from an ordinary Hamiltonian in ADM coordinates. As an application, we investigate the problem of the dynamical stability of circular binary orbits against gravitational perturbations up to the 3PN order. We find that there is no innermost stable circular orbit or ISCO at the 3PN order for equal masses. To cite this article: L. Blanchet, C. R. Physique 8 (2007).  相似文献   

5.
We generalize our previous work, on the gravitational two-body post-Newtonian Lagrangian with spin and parametrized post-Newtonian parameters and , by addingaccelerationdependent spin terms corresponding to anarbitrary spin supplementary condition. For the purpose of constructing the corresponding Hamiltonian we make use of our recently developedmethod of the double zero. Using this method, we remove the acceleration-dependent spin terms from the Lagrangian and, in the process, create new non-accelerationdependent terms. Use of this new Lagrangian enables us to construct the Hamiltonian corresponding to the arbitrary spin supplementary condition. Energy constants of the motion are also discussed.  相似文献   

6.
7.
We demonstrate that from the first order formulation of the Einstein– Cartan action it is possible to derive the basic differential identity that leads to translational invariance of the action in the tangent space. The transformations of fields is written explicitly for both the first and second order formulations and the group properties of transformations are studied. This, combined with the preliminary results from the Hamiltonian formulation (Kiriushcheva and Kuzmin in arXiv:0907.1553 [gr-qc]), allows us to conclude that without any modification, the Einstein–Cartan action in any dimension higher than two possesses not only rotational invariance but also a form of translational invariance in the tangent space. We argue that not only a complete Hamiltonian analysis can unambiguously give an answer to the question of what a gauge symmetry is, but also the pure Lagrangian methods allow us to find the same gauge symmetry from the basic differential identities.  相似文献   

8.
We use recently developed effective field theory techniques to calculate the third order post-Newtonian correction to the spin-spin potential between two spinning objects. This correction represents the first contribution to the spin-spin interaction due to the nonlinear nature of general relativity and will play an important role in forthcoming gravity wave experiments.  相似文献   

9.
This paper shows that a conservative canonical post-Newtonian Hamiltonian formulation of spinning compact binaries with a pure orbital part up to third post-Newtonian order and spin-orbit contributions at the next-to-leading post-Newtonian order is explicitly integrable and regular because there are 5 independent exact isolating integrals in the 10-dimensional phase space. With the help of symplectic integrators and the fast Lyapunov indicators of two nearby trajectories, numerical investigations also support the absence of chaos.  相似文献   

10.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

11.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

12.
The spin-dependent terms of an approximate, Breit-Fermi-type Hamiltonian for heavy quark-antiquark pairs are obtained by the use of an effective-action approach to QCD statics. As an introduction, a review of the effective action method and the related confinement mechanism is given. The method is extended to include spin-spin effects and the spin-orbit terms are derived from the spin-spin potential in a natural way. The quantitative functional form of the spin potential is given in terms of the solutions to numerical problems that are formulated but not solved. The solution of these problems will be reported in a subsequent paper.  相似文献   

13.
Starting from the instant form of relativistic quantum dynamics for a system of interacting fields, where amongst the ten generators of the Poincaré group only the Hamiltonian and the boost operators carry interactions, we offer an algebraic method to satisfy the Poincaré commutators.We do not need to employ the Lagrangian formalism for local fields with the N?ether representation of the generators. Our approach is based on an opportunity to separate in the primary interaction density a part which is the Lorentz scalar. It makes possible apply the recursive relations obtained in this work to construct the boosts in case of both local field models (for instance with derivative couplings and spins ≥ 1) and their nonlocal extensions. Such models are typical of the meson theory of nuclear forces, where one has to take into account vector meson exchanges and introduce meson-nucleon vertices with cutoffs in momentum space. Considerable attention is paid to finding analytic expressions for the generators in the clothed-particle representation, in which the so-called bad terms are simultaneously removed from the Hamiltonian and the boosts. Moreover, the mass renormalization terms introduced in the Hamiltonian at the very beginning turn out to be related to certain covariant integrals that are convergent in the field models with appropriate cutoff factors.  相似文献   

14.
钟双英  刘崧 《物理学报》2012,61(12):120401-120401
本文利用辛算法和功率谱研究旋转致密双星保守的后牛顿哈密顿系统的引力辐射, 讨论了系统的动力学参量、旋转-轨道耦合、旋转-旋转耦合效 应及轨道类型对后牛顿近似引力波形的影响. 数值结果表明有序轨道的引力波随时间呈周期性地变化, 而混沌轨道引力波的变化具有混沌性, 并且轨道的混沌特性可提高引力波的辐射能量, 尤其指出的是旋转参量大小对引力波形的变化发挥至关重要的作用.  相似文献   

15.
The different forms of the Hamiltonian formulations of linearized General Relativity/spin-2 theories are discussed in order to show their similarities and differences. It is demonstrated that in the linear model, non-covariant modifications to the initial covariant Lagrangian (similar to those modifications used in full gravity) are in fact unnecessary. The Hamiltonians and the constraints are different in these two formulations but the structure of the constraint algebra and the gauge invariance derived from it are the same. It is shown that these equivalent Hamiltonian formulations are related to each other by a canonical transformation, which is explicitly given. The relevance of these results to the full theory of General Relativity is briefly discussed.  相似文献   

16.
We begin with proposing a unitary operator responsible for diagonalizing the Hamiltonian with kinetic couplings in particle physics to get a new form of Hamiltonian which has no coupling terms. By virtue of the invariant eigen-operator (IEO) method we search for the invariant eigen-operators for the new Hamiltonian. In this way the energy-gap of the Hamiltonians can be naturally obtained. This method may be generalized to N-mode Hamiltonian with kinetic couplings case. Work supported by the National Natural Science Foundation of China under grant 10475056 and Foundation of President of Chinese Academy of Science.  相似文献   

17.
We present the perturbation theory for lattice magnon fields of the DD-dimensional O(3) Heisenberg ferromagnet. The effective Hamiltonian for the lattice magnon fields is obtained starting from the effective Lagrangian, with two dominant contributions that describe magnon–magnon interactions identified as a usual gradient term for the unit vector field and a part originating in the Wess–Zumino–Witten term of the effective Lagrangian. Feynman diagrams for lattice scalar fields with derivative couplings are introduced, on the basis of which we investigate the influence of magnon–magnon interactions on magnon self-energy and ferromagnet free energy. We also comment appearance of spurious terms in low-temperature series for the free energy by examining magnon–magnon interactions and internal symmetry of the effective Hamiltonian (Lagrangian).  相似文献   

18.
It is shown that the usual Hamilton's variational principle supplemented by the methodology of the integer-programming problem can be used to construct expressions for the Lagrangian densities of higher KdV fields. This is demonstrated with special emphasis on the second and third members of the hierarchy. However, the method is general enough for applications to equations of any order. The expressions for Lagrangian densities are used to calculate results for Hamiltonian densities that characterize Zakharov-Faddeev-Gardner equation. Received 27 January 2002 / Received in final form 6 May 2002 Published online 24 September 2002  相似文献   

19.
钟双英  刘崧  胡淑娟 《物理学报》2013,62(23):230401-230401
本文主要研究非保守的后牛顿哈密顿自旋致密双星偏心轨道的引力辐射,数值比较保守的和非保守的自旋致密双星系统轨道参量偏心率大小与 引力波形的关系及引力辐射耗散效应项对轨道动力特性的影响. 数值研究表明:由于系统能量积分被保持,保守的双星轨道偏心率值改变对时域引力波形变化影响不是很明显,但辐射的引力波频率分布范围随着偏心率的增大而扩大. 而当运动方程中包含2.5PN引力耗散效应项时,由于引力辐射时伴随着能量和角动量损失,导致双星两体之间的距离和轨道偏心率逐渐衰减,轨道动力特性变得更加复杂. 双星旋进合并过程中辐射的引力波受到轨道偏心率的调制,引力辐射的强度随着偏心率的增大而增强,而引力辐射持续的时间缩短,且自旋与自旋耦合效应项对引力的贡献增大了. 关键词: 非保守的 引力辐射 耗散 偏心率  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号