首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Phthalocyanine photosensitizers are effective in anticancer photodynamic therapy (PDT) but suffer from limited solubility, limited cellular uptake and limited selectivity for cancer cells. To improve these characteristics, we synthesized isopropylidene‐protected and partially deprotected tetra β‐glycosylated zinc (II) phthalocyanines and compared their uptake and accumulation kinetics, subcellular localization, in vitro photocytotoxicity and reactive oxygen species generation with those of disulfonated aluminum phthalocyanine. In MCF‐7 cancer cells, one of the compounds, zinc phthalocyanine {4}, demonstrated 10‐fold higher uptake, 5‐fold greater PDT‐induced cellular reactive oxygen species concentration and 2‐fold greater phototoxicity than equimolar (9 μm ) disulfonated aluminum phthalocyanine. Thus, isopropylidene‐protected β‐glycosylation of phthalocyanines provides a simple method of improving the efficacy of PDT.  相似文献   

2.
Abstract

Synthesis and characterization of (E)-4-((5-bromo-2-(λ1-oxidanyl)benzylidene)amino)-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (1), its substituted phthalonitrile derivative (2), and its tetra substituted zinc(II) phthalocyanine complex (3) were performed. Compounds 1, 2, and 3 were characterized by methods such as elemental analyses, FT-IR, 1H-NMR, 13C-NMR (except for 3), and MALDI-TOF mass spectra. The photophysical and photochemical properties of this substituted zinc(II) phthalocyanine complex aimed to be used as a photosensitizer were investigated in DMSO solution for determination of their photosensitizing abilities in photocatalytic applications such as photodynamic therapy (PDT). The influence of the substituent as a bioactive compound on the phthalocyanine skeleton on spectroscopic, photophysical, and photochemical properties were also determined and compared with unsubstituted zinc(II) phthalocyanine and some zinc(II) phthalocyanines containing different substituents previously studied. According to photophysical and photochemical investigations, 3 has potential as a photosensitizer for PDT.  相似文献   

3.
Three novel substituted zinc (II) phthalocyanines (one anionic, one cationic and one neutral) were compared to two clinically used photosensitizers, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (m-THPC) and polyhematoporphyrin (PHP), as potential agents for photodynamic therapy (PDT). Using the RIF-1 cell line, photodynamic efficacy was shown to be related to cellular uptake. The cationic phthalocyanine (PPC, pyridinium zinc [II] phthalocyanine) had improved activity over the other two phthalocyanines and slightly improved activity over PHP and m-THPC. The initial subcellular localization of each photosensitizer was dependent upon the hydrophobicity and plasma protein binding. The phthalocyanines had a punctate distribution indicative of lysosomes, whereas m-THPC and PHP had a more diffuse cytoplasmic localization. A relocalization of phthalocyanine fluorescence was observed in some cases following low-level light exposure, and this was charge dependent. The anionic phthalocyanine (TGly, tetraglycine zinc [II] phthalocyanine) relocalized to the nuclear area, the localization of the hydrophobic phthalocyanine (TDOPc, tetradioctylamine zinc [II] phthalocyanine) was unchanged, whereas the distribution of the cationic phthalocyanine (PPC) became more cytoplasmic. This suggests that relocalization following low-level irradiation is a critical factor governing efficacy, and a diffuse cytoplasmic distribution may be a determinant of good photodynamic activity.  相似文献   

4.
Abstract Syngeneic mice bearing a colorectal carcinoma (Colo 26) growing subcutaneously in the flank region received photodynamic therapy (PDT) when the tumor was 7-12 mm diameter. Light (emission at 675 nm from an argon ion pumped dye laser, laser energy 100 J, power 50 mW) was delivered to the tumor 24-28 h after the i.v. injection of a single dose of chloro aluminum sulfonated phthalocyanine (ClAlSPc) at 5 mg kg1 body weight. Control tumor-bearing animals received (1) phosphate buffered saline (PBS) but not PDT, (2) ClAlSPc but not PDT, or (3) PBS injection plus PDT. Five days later PDT tumors of the ClAlSPc + PDT group were markedly reduced in size (mean weight 0.075 ± 0.027 g) as compared with those from control groups 1 (0.408 ± 0.167 g), 2 (0.475 ± 0.143 g) or 3 (0.376 ± 0.153 g). Histological examination revealed that ClAlSPc + PDT induced severe necrosis and cytotoxicity of neoplastic cells with viable tumor limited to a small peripheral margin. Animals in the ClAlSPc + PDT group in a repeat experiment survived significantly longer than animals in the three control groups suggesting that ClAlSPc may be a useful photosensitiser for PDT of cancer.  相似文献   

5.
Abstract— The effects of four different zinc phthalocyanines were studied during and after photodynamic therapy (PDT). Measurements of vessel constriction, vessel leakage, tumor interstitial pressure, eicosanoid release, and tumor response of chondrosarcoma were made in Sprague-Dawley rats. Animals were injected intravenously with 1 μmol/ kg of mono-, di-, or tetrasulfonated zinc phthalocyanine, or 1 μmol/kg of a zinc phthalocyanine substituted with four tertiary butyl groups. Tissues were exposed to 400 J/cm2 670 nm light 24 h after photosensitizer injection. An additional group of animals was given indomethacin before treatment. The use of the monosulfonated and tertiary butyl substituted zinc phthalocyanines in PDT caused the release of specific eicosanoids, caused vessel constriction, and induced venule leakage and increases in tumor interstitial pressure. Tumor cures of 27% and 7% were observed. Photodynamic therapy using the disulfonated zinc phthalocyanine did not induce vessel constriction or the release ofeicosanoids, however; tumor cure was 43%. The use of thc tetrasulfonated zinc phthalocyanine caused intermediate effects between the mono- and disulfonated compounds. The administration of indornethacin to animals completely inhibited the effects of PDT using the monosulfonated compound but had minimal effects on treatment using the disulfonated compound. This suggests that the monosulfonated and disulfonated compounds act by different mechanisms of destruction.  相似文献   

6.
Abstract— The mutagenicity of photodynamic therapy (PDT) using red light and either Photofrin® (porfimer sodium) (PF) or aluminum phthalocyanine (AIPc) as the photosensitizer was determined at the thymidine kinase (TK) locus in the human lymphoblastic cell lines, TK6 and WTK1, and was compared to the mutagenicity of UVC and X-radia-tion in these cells as well as the mutagenicity of PDT in murine L5178Y lymphoblastic cell lines. Photodynamic therapy was found not to be mutagenic in TK6 cells, which possess an active p53 gene and which are relatively deficient in recombination and repair of DNA double-strand breaks. In contrast, PDT with either sensitizer was significantly mutagenic in WTK1 cells, which harbor an inactivating mutation in the p53 gene and are relatively efficient in recombination and double-strand break repair as compared to TK6 cells. The induced mutant frequency in WTK1 cells with PF as the photosensitizer was similar to that induced by UVC radiation but lower than that induced by X-radiation at equitoxic faiences/ doses. The mutant frequency induced by PDT in WTK1 cells with either photosensitizer was much lower than that induced in murine lymphoblasts at equitoxic fluences. The TK6 and WTK1 cells did not differ in their sensitivity to the cytotoxic effects of PDT, but the level of PDT-induced apoptosis was greater in TK6 than in WTK1 cells. These results indicate that the mutagenicity of PDT varies in different types of cells and may be related to the repair capabilities as well as the p53 status of the cells.  相似文献   

7.
A novel approach for tuning spectral properties, as well as minimizing aggregation, in zinc porphyrin and zinc phthalocyanine‐based compounds is presented. Particular emphasis is placed on use of these compounds as photosensitizers in photodynamic therapy (PDT). To accomplish this aim, a bulky hydrophobic cation, trihexyltetradecylphosphonium, is paired with anionic porphyrin and phthalocyanine dyes to produce a group of uniform materials based on organic salts (GUMBOS) that absorb at longer wavelengths with high molar absorptivity and high photostability. Nanoparticles derived from these GUMBOS possess positively charged surfaces with high zeta potential values, which are highly desirable for PDT. Upon irradiation at longer wavelengths, these GUMBOS produced singlet oxygen with greater efficiency as compared to the respective parent dyes.  相似文献   

8.
A series of zinc–phthalocyanine sensitizers ( PcS16 – 18 ) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption‐site structures on the solar‐cell performances in zinc–phthalocyanine based dye‐sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time‐resolved fluorescence spectroscopy. The zinc–phthalocyanine sensitizer PcS18 , possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6‐diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light‐harvesting dye on a TiO2 electrode under one simulated solar condition.  相似文献   

9.
Two distinct photodynamic therapy-resistant variants of the murine radiation-induced fibrosarcoma (RIF) cell line have been isolated. One strain displayed relative resistance over the parental RIF-1 strain to treatment with the porphyrin-based compound, polyhaematoporphyrin (PHP), whereas the other strain displayed relative resistance over the RIF-1 strain to treatment using the cationic zinc (II) pyridinium-substituted phthalocyanine (PPC). The PHP-resistant strain did not display cross-resistance to PPC-mediated treatment, and vice versa. In both PDT-resistant strains, the increased resistance could not be attributed to altered cellular growth rate, antioxidant capacity or intracellular sensitizer localization. The PHP-resistant strain displayed resistance to treatment with both short (1 h) and extended (16 h) sensitizer incubation periods, which may indicate that in this strain, the resistance has arisen through an alteration in a membrane component. Conversely, the PPC-resistant strain only displayed increased resistance over the parental cells to treatment involving the short drug incubation, which is likely to reflect the existence of a threshold effect caused by the alteration of an individual cellular target. Each resistant strain has been compared to the parental strain in terms of cellular sensitivity to treatment with a range of other photosensitizers, hyperthermia, UV light and the anticancer agent cis-diamminedichloroplatinum. The PHP-resistant strain exhibited crossresistance to photosensitization treatment using exogenously added protoporphyrin IX, and also to treatment with the anionic phthalocyanine sensitizers, zinc (II) tetrasulfonated phthalocyanine and zinc (II) tetraglycine-substituted phthalocyanine. The PPC-resistant strain did not display cross-resistance to any of the treatment strategies employed in this investigation. The results of this investigation indicate that there are at least two distinct mechanisms of PDT resistance in RIF cells, and that the mechanism of PHP resistance may, to some extent depend, upon the physical nature of the sensitizer molecule.  相似文献   

10.
The phthalocyanine dyes are attractive sensitizers for photodynamic therapy of cancer. The light fluence response curves for photocytotoxicity of zinc tetrahydroxyphthalocyanine were constructed using the colony-forming ability of Chinese hamster cells as an end-point. The survival curve of cells photosensitized to white light by this dye has a pronounced shoulder followed by an exponential decline. Postillumination hypertonic treatment (0.5 M NaCl for 20 min at 37 degrees C) enhanced log-phase killing, although to a lesser extent than after exposure to ionizing radiation. While such an enhancement usually indicates that the cells are able to repair potentially lethal damage, delayed trypsinization of photosensitized cells in plateau-phase failed to show a significant increase in cell survival. Thus, the repair of such a damage in plateau-phase is apparently absent. Experiments with split light fluence indicated that log-phase cells can repair sublethal damage during a 24 h interval, as evidenced by the reappearance of the shoulder on the split-dose survival curve.  相似文献   

11.
The optical properties of zinc phthalocyanine (ZnIIPc) and magnesium phthalocyanine (MgIIPc) in DMSO and DMF solutions have been extensively investigated, and the photoelectrochemical behaviors of layer-by-layer hybrid junctions formed of the two metallo(II) phthalocyanines (MIIPcs) and wide-band-gap colloidal semiconductors, namely, ZnO and TiO2 nanocrystals (NCs), have been probed. Different experimental conditions, such as the Pc center metal ion, dye concentration, and solvent identity, were investigated in order to elucidate their effects on the photoelectrochemical performances of the prepared heterojunctions. Finally, thermal treatment of either dye and NC films and control of the NC shape and surface chemistry were also studied and, interestingly, were found to be critical in affecting the performance of photochemical sensitization processes, occurring at the dye/oxide and oxide/solution interfaces.  相似文献   

12.
Multidrug resistance (MDR) has posed a significant threat to cancer treatment and has led to the emergence of a new therapeutic regime of photodynamic therapy (PDT) to curb the menace. The PDT modality employs a photosensitiser (PS), excited at a specific wavelength of light to kill cancer cells. In the present study, we used a zinc phthalocyanine tetrasulfonic acid PS to mediate the photodynamic killing of MCF-7 cells overexpressed with P-glycoprotein (P-gp) and investigate the response to cell death induction. After photodynamic treatment, MCF-7 cells undergo cell death, and indicators like Annexin V/PI staining, DNA fragmentation, and measurement of apoptotic protein expression were investigated. Results showed increased externalisation of phosphatidylserine protein, measured as a percentage in flow cytometry indicative of apoptotic induction. This expression was significant (p < 0.006) for the untreated control cells, and there was no detection of DNA fragments after a laser fluence of 20 J/cm2. In addition, a statistically significant difference (p < 0.05) was seen in caspase 8 activity and Bax protein expression. These findings were indicative of apoptotic induction and thus seem to represent the extrinsic apoptotic pathway. This study shows the role of PDT in the treatment of a resistant phenotype breast cancer.  相似文献   

13.
Capacitances of five types of viruses, adenovirus type 5 (AV5), herpes simplex virus type 1 (HSV1), simian virus 40 (SV40), vaccinia (MVA), and cowpea mosaic virus (CPMV), were compared by AC capacitance scanning probe microscopy. This technique, using a Pt-coated AFM tip as an electrode to probe capacitance of materials between the tip and a bottom electrode, has been applied to study surface structures of semiconductors and polymers with nanometer spatial resolution; however, biological samples at the nanoscale have not been explored by this technique yet. Because most biological cells are poor conductors, this approach to probe electric properties of cells by capacitance is logical. This scanning probe technique showed that each virus has distinguishable and characteristic capacitance. A series of control experiments were carried out using mutant viruses to validate the origin of the characteristic capacitance responses for different viruses. A mutation on the capsid in HSV1 with green fluorescence proteins increased capacitance from 9 x 10(-6) to 1 x 10(-5) F/cm2 at the frequency of 10(4) Hz. Herpes simplex virus type 2 (HSV2) decreased capacitance when its envelope and glycoproteins were chemically extracted. These control experiments indicate that dielectric properties of capsid proteins and envelope glycoproteins significantly influence overall dielectric constants of viruses. Because those capsid proteins and glycoproteins are characteristic of the virus strain, this technique could be applied to detect and identify viruses at the single viron level using their distinct capacitance spectra as fingerprints without labeling.  相似文献   

14.
The photophysical properties of fullerene and/or phthalocyanine dyes embedded in ordered mesoporous silica films and the influence of annealing temperature on the nature of the immobilized dye molecules has been investigated using photoluminescence (PL) and diffuse reflectance (DR) studies. The PL and DR studies show that fullerene (C60) and/or zinc phthalocyanine (ZnPc) molecules incorporated into transparent mesoporous silica films, via either sol-gel or grafting routes, exist predominantly in monomeric form. Careful choice of annealing temperature, between 25 and 225 degrees C, can further enhance monomeric dispersion. For C60-containing films, monomeric dispersion of fullerene was observed for annealing temperatures up to 175 degrees C for sol-gel derived films and 225 degrees C for grafted films. Both sol-gel and grafted ZnPc-containing films showed evidence of monodispersed phthalocyanine for annealing temperatures up to 225 degrees C. In general, annealing temperatures in the range 125-175 degrees C were found to yield optimal monodispersion of the dye molecules. When both C60 and ZnPc were incorporated into the silica films, no evidence of interaction between the dyes, i.e., charge-transfer transitions or the formation of fullerene/phthalocyanine charge-transfer complexes, was observed. This suggests that embedded fullerene and phthalocyanine molecules may be used for the preparation of solid-state optical limiters, based on reverse saturable absorption, where monomeric dispersion of the dye molecules is important.  相似文献   

15.
Abstract Very little is known about the applicability of the metabolic and biochemical events observed in cell culture systems to in vivo tumor shrinkage following photodynamic therapy (PDT). The purpose of this study was to assess whether PDT induces apoptosis during tumor ablation in vivo . We treated radiation-induced fibrosarcoma (RIF-1) tumors grown in C3H/HeN mice with PDT employing three photosensitizers, Photofrin-II, chloroaluminum phthalocyanine tetrasulfonate, or Pc IV (a promising phthalocyanine developed in this laboratory). Each photosensitizer was injected intraperitoneally and 24 h later the tumors were irradiated with an appropriate wavelength of red light using an argon-pumped dye laser. During the course of tumor shrinkage, the tumors were removed at 1, 2, 4 and 10 h post-PDT for DNA fragmentation, histopathologic, and electron microscopic studies. Markers of apoptosis, viz . the ladder of nucleosome-size DNA fragments, increased apoptotic bodies, and condensation of chromatin material around the periphery of the nucleus, were evident in tumor tissue even 1 h post-PDT; the extent of these changes increased during the later stages of tumor ablation. No changes were observed in tumors given photosensitizer alone or irradiation alone. Our data suggest that the damage produced by in vivo PDT may activate endonucleolysis and chromatin condensation, and that apoptosis is an early event in tumor shrinkage following PDT.  相似文献   

16.
Monolithic transparent mesoporous silica films embedded with zinc phthalocyanine (ZnPc) have been synthesized and it is shown that the encapsulated ZnPc dye molecules exist predominantly in monomeric form.  相似文献   

17.
Photodynamic therapy (PDT) is based on the light-induced activation of a photosensitizer generating highly reactive oxygen species that induce tissue destruction in malignant tissues. The present study was carried out to assess the photosensitizing potential of bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine in PDT trials in vivo. Male Swiss albino mice were divided into five groups. Skin tumor was induced using 7,12-dimethylbenz(a)anthracene - DMBA in the animals of Groups II, III, IV and V, while animals of Group I served as the control. At the completion of 20 weeks of induction, the tumor bearing mice from Group III, IV and V were given an intraperitoneal injection with the squaraine dye (12.5mg/kg body weight). After 24h, in the Group IV and V animals, the tumor area was exposed to visible light from a 1000W halogen lamp. The mice from groups I to IV were sacrificed two weeks after the PDT treatment and the marker enzymes (myeloperoxidase [MPO], beta-d-glucuronidase, rhodanese, lactate dehydrogenase [LDH], hexokinase, sialic acid and caspase) were assayed in tumor and normal tissues. Animals from Group V were sacrificed after 90 days of PDT treatment and the above parameters were recorded. Reduction in tumor volume and reversal of biochemical markers to near normal levels were observed in the treatment groups. The study assumes importance as it is the first report on PDT-a novel modality, using a squaraine dye for skin cancer therapy in vivo. The uniqueness of the mode of treatment lies in the selective uptake of squaraine dye by the cancer cells and their selective destruction using PDT without affecting the neighbouring normal cells, which is much advantageous over radiation therapy now frequently used. Also in skin cancer models, the progression/cure can be visualized by the naked eye which is another point of advantage, while seeking new modalities for the treatment of cancer.  相似文献   

18.
Zhou N  Gu YX  Lu ZR  Chen WY 《Talanta》1989,36(7):739-742
A new spectrophotometric method for the determination of zinc is proposed. The chromogenic agent Hydrazidazol forms a 1:1 chelate with zinc in the presence of Triton X-100 in a medium containing 20-40% ethanol. The molar absorptivity and conditional formation constant have been found to be 2.7 x 1O(4) l.mole(-1).cm(-1) (at 640 nm) and 10(5.32) respectively. Beer's law is obeyed for zinc over the range of 0.2-0.8 mug/ml with a standard deviation of 0.024 mug/ml. The method can be applied to the determination of zinc in cadmium metal and its oxide after preconcentration by selective extraction of zinc thiocyanate into ethyl acetate in the presence of EDTA and thiosulphate as masking agents.  相似文献   

19.
Abstract— Photodynamic treatment (PDT) using phthalocyanines and red light appears to be a promising procedure for decontamination of red blood cell (RBC) concentrates for transfusion. A possible complication of this treatment may be induced aggregation of RBC. The production of RBC aggregates was measured with a novel computerized cell flow properties analyzer (CFA). The PDT of RBC concentrates with sulfonated aluminum phthalocy-anine (AIPcS4) and the silicon phthalocyanine Pc 4 under virucidal conditions markedly enhanced RBC aggregation and higher shear stress was required to disperse these aggregates. The clusters of cells were huge and abnormally shaped, unlike the rouleaux formed by untreated RBC. This aggregation was prevented when a mixture of antioxidants was included during PDT. Addition of the antioxidants after PDT reduced aggregation only partially. It is concluded that inclusion of antioxidants during PDT of RBC concentrates prior to transfusion may reduce or eliminate the hemodynamic risk that the virucidal treatment may present to the recipient.  相似文献   

20.
Intimal hyperplasia (IH) plays a dominant role in the development of restenosis. In previous studies, photodynamic therapy (PDT) prevented IH induced by segmental balloon injury of the rat carotid. The critical elements required to control IH effectively with this technique are not fully understood. This study assessed the importance of the treatment field by studying the repair process of injured vessels, in which the PDT-treatment field did not target the entire injured area. The entire rat common carotid artery was balloon-injured to induce IH, whereas only the cervical segment below the bifurcation was subjected to PDT by external light irradiation after administration of the photosensitizer chloroaluminum sulfonated phthalocyanine. Light irradiation of injured arteries without photosensitizer served as control for PDT, and PDT of uninjured arteries was included as a control group for the balloon injury. Histologic characterization of the repair process was sequentially assessed. Balloon-injured arteries without PDT displayed rapid IH development with a peak at 2 weeks. Photodynamic therapy of balloon-injured arteries resulted in complete local depletion of medial smooth muscle cells (SMC), which was associated with a lack of IH until 2 weeks. However, at 4 and 16 weeks there was significant IH in PDT-treated arteries despite a lack of medial SMC repopulation. A wave of IH progression over the acellular media was observed in these arteries, migrating from the injured non-PDT-treated area. The PDT of uninjured arteries did not result in IH and was also associated with a persistent acellular media. Delayed IH development after PDT of injured vessels can result from IH progression from an injured site not included in the treatment field. This also indicated that the source of cells developing the intimal hyperplasia lesion can originate from an area remote from the lesion. Together with previous results and the determination that PDT itself does not induce IH, it can be reasoned that inclusion of the whole injured artery or a section of an uninjured margin in the treatment field is essential for effective PDT prevention of IH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号