首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of HCl on the surface of H(2)O ice has been measured at temperatures and pressures relevant to the upper troposphere and lower stratosphere. The measured HCl surface coverage is found to be at least 100 times lower than currently assumed in models of chlorine catalyzed ozone destruction in cold regions of the upper atmosphere. Measurements were conducted in a closed system by simultaneous application of surface spectroscopy and gas phase mass spectrometry to fully characterize vapor/solid equilibrium. Surface adsorption is clearly distinguished from bulk liquid or solid phases. From 180 to 200 K, submonolayer adsorption of HCl is well described by a Bragg-Williams modified Langmuir model which includes the dissociation of HCl into H(+) and Cl(-) ions. Furthermore, adsorption is consistent with two distinct states on the ice substrate, one in which the ions only weakly adsorb on separate sites, and another where the ions adsorb as an H(+)-Cl(-) pair on a single site with adsorption energy comparable to the bulk trihydrate. The number of substrate H(2)O molecules per adsorption site is also consistent with the stoichiometry of bulk hydrates under these conditions. The ionic states exist in equilibrium, and the total adsorption energy is a function of the relative population of both states. These observations and model provide a quantitative connection between the thermodynamics of the bulk and interfacial phases of HCl/H(2)O, and represent a consistent physicochemical model of the equilibrium system.  相似文献   

2.
We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.  相似文献   

3.
We studied diffusion of water molecules in the direction perpendicular to the surface of an ice film. Amorphous ice films of H(2)O were deposited on Ru(0001) at temperature of 100-140 K for thickness of 1-5 bilayer (BL) in vacuum, and a fractional coverage of D(2)O was added onto the surface. Vertical migration of surface D(2)O molecules to the underlying H(2)O multilayer and the reverse migration of H(2)O resulted in change of their surface concentrations. Temporal variation of the H(2)O and D(2)O surface concentrations was monitored by the technique of Cs(+) reactive ion scattering to reveal kinetics of the vertical diffusion in depth resolution of 1 BL. The first-order rate coefficient for the migration of surface water molecules ranged from k(1)=5.7(+/-0.6) x 10(-4) s(-1) at T=100 K to k(1)=6.7(+/-2.0) x 10(-2) s(-1) at 140 K, with an activation energy of 13.7+/-1.7 kJ mol(-1). The equivalent surface diffusion coefficients were D(s)=7 x 10(-19) cm(2) s(-1) at 100 K and D(s)=8 x 10(-17) cm(2) s(-1) at 140 K. The measured activation energy was close to interstitial migration energy (15 kJ mol(-1)) and was much lower than diffusion activation energy in bulk ice (52-70 kJ mol(-1)). The result suggested that water molecules diffused via the interstitial mechanism near the surface where defect concentrations were very high.  相似文献   

4.
H/D isotopic exchange between H(2)O and D(2)O molecules was studied at the surface of ice films at 90-140 K by the technique of Cs(+) reactive ion scattering. Ice films were deposited on a Ru(0001) substrate in different compositions of H(2)O and D(2)O and in various structures to study the kinetics of isotopic exchange. H/D exchange was very slow on an ice film at 95-100 K, even when H(2)O and D(2)O were uniformly mixed in the film. At 140 K, H/D exchange occurred in a time scale of several minutes on the uniform mixture film. Kinetic measurement gave the rate coefficient for the exchange reaction, k(140 K)=1.6(+/-0.3) x 10(-19) cm(2) molecule(-1) s(-1) and k(100 K)< or =5.7(+/-0.5) x 10(-21) cm(2) molecule(-1) s(-1) and the Arrhenius activation energy, E(a)> or =9.8 kJ mol(-1). Addition of HCl on the film to provide excess protons greatly accelerated the isotopic exchange reaction such that it went to completion very quickly at the surface. The rapid reaction, however, was confined within the first bilayer (BL) of the surface and did not readily propagate to the underlying sublayer. The isotopic exchange in the vertical direction was almost completely blocked at 95 K, and it slowly occurred only to a depth of 3 BLs from the surface at 140 K. Thus, the proton transfer was highly directional. The lateral proton transfer at the surface was attributed to the increased mobility of protonic defects at the molecularly disordered and activated surface. The slow, vertical proton transfer was probably assisted by self-diffusion of water molecules.  相似文献   

5.
Hydroxide ions that are initially buried within an ice film segregate to the ice film surface at elevated temperatures. This process was observed by conducting experiments with an ice film constructed with a bottom H(2)O layer and an upper D(2)O layer, with an excess of hydroxide ions trapped at the H(2)O/D(2)O interface as they were generated by Na hydrolysis. The transport of hydroxide ions from the interfacial layer to the surface was examined as a function of time using a low energy sputtering method. The progress of the H/D exchange reaction in surface water molecules was also monitored with the Cs(+) reactive ion scattering technique. At 90 K, only a small portion of buried hydroxide ions moved to the surface in the form of OD(-) species. This was due to hydroxide transport via proton hopping through a D(2)O layer, 3 BL thick, in the surface region. At 135 K, at which point water self-diffusion is active in the ice film, the majority of the buried hydroxide ions segregated to the surface after ~1 h. Both OH(-) and OD(-) species were produced at the surface, at an OH(-)/OD(-) population ratio ≥1. Based on kinetic measurements for the transport of OH(-) and OD(-) species and the H/D exchange of surface water molecules, we concluded that the major transport channel for hydroxide ions in this regime is the migration of molecular hydroxide species. H/D exchange reactions also occur between surface hydroxide ions and water molecules. No evidence was observed for the occurrence of the hop-and-turn process at 135 K, although it is known as an important mechanism of proton transport in ice.  相似文献   

6.
Ultrathin glycine-ice films (nanolayers) have been prepared in ultrahigh vacuum by condensation of H(2)O and glycine at 110 K and 150 K on single crystalline Al(2)O(3) surfaces and have been investigated by temperature programed thermal desorption, x-ray photoelectron spectroscopy, and work function measurements. Various layer architectures have been considered, including glycine-on-ice, ice-on-glycine, and mixed glycine-ice nanolayers. Low coverages of adsorbed glycine molecules on amorphous ice surfaces suppress the amorphous-to-crystalline phase transition in the temperature range 140-160 K in near-surface regions and consequently lead to a lower desorption temperature of H(2)O molecules than from pure ice layers. Thicker glycine overlayers on ice provide a kinetic restriction to H(2)O desorption from the underlying ice layers until the glycine molecules become mobile and develop pathways for water desorption at higher temperature (>170 K). Ice overlayers do not wet glycine film surfaces, but the glycine molecules on ice are sufficiently immobile at 110 K, so that continuous glycine overlayers form. In mixed glycine-ice nanolayers the glycine phase displays hydrophobic behavior and a phase separation takes place, with the accumulation of glycine near the surfaces of the films.  相似文献   

7.
The interactions between CO(2) and D(2)O molecules have been investigated by using time-of-flight secondary ion mass spectrometry in the temperature rage 13-120 K. The monolayer of CO(2) tends to wet or intermix with the D(2)O film below 40 K and dewets the surface above 60 K. The water nanoclusters deposited on the CO(2) multilayers also start to segregate at 50-60 K and are finally incorporated in the bulk at 85-90 K, where the morphology of the film changes abruptly together with the desorption rate of the CO(2) molecules. The break at 85 K should be caused by the occurrence of the fluidized film whereas the glass-transition temperature of CO(2), as determined from the onset of translational molecular diffusion, is assigned to 50 K. This behavior may be related to the ultraviscous nature of the supercooled liquid, arising from the decoupling between the translational molecular diffusion and viscosity. The He(+) irradiation of the mixed CO(2)-D(2)O ice and the D(2)(+) irradiation of the CO(2) ice at 13 K do not yield any surface residues assignable to H(2)CO(3) and its precursors above 100 K. This result may be related to the segregation between the CO(2) and D(2)O molecules.  相似文献   

8.
The interaction and autoionization of HCl on low-temperature (80-140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). There is a reduction of H(+) and H(2)(+) and a concomitant increase in H(+)(H(2)O)(n=1-7) ESD yields due to the presence of submonolayer quantities of HCl. These changes are consistent with HCl induced reduction of dangling bonds required for H(+) and H(2)(+) ESD and increased hole localization necessary for H(+)(H(2)O)(n=1-7) ESD. For low coverages, this can involve nonactivated autoionization of HCl, even at temperatures as low as 80 K; well below those typical of polar stratospheric cloud particles. The uptake and autoionization of HCl is supported by TPD studies which show that for HCl doses ≤0.5 ± 0.2 ML (ML = monolayer) at 110 K, desorption of HCl begins at 115 K and peaks at 180 K. The former is associated with adsorption of a small amount of molecular HCl and is strongly dependent on the annealing history of the ice. The latter peak at 180 K is commensurate with desorption of HCl via recombinative desorption of solvated separated ion pairs. The activation energy for second-order desorption of HCl initially in the ionized state is 43 ± 2 kJ/mol. This is close to the zero-order activation energy for ice desorption.  相似文献   

9.
Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.  相似文献   

10.
The interaction of CsF with multilayered water has been investigated with metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy with HeI (UPS(HeI)). We have studied the emission from the ionization of H2O states 1b1, 3a1, and 1b2; of Cs5p and of F2p. We have prepared CsF-H2O interfaces, namely, CsF layers on thin films of multilayered water and vice versa; they were annealed between 80 and about 280 K. Up to about 100 K, a closed CsF layer can be deposited on H2O and vice versa; no interpenetration of the two components H2O and CsF could be observed. Above 110 K, CsF (H2O) layers deposited on thin H2O (CsF) films (stoichiometry CsF.1.5H2O) gradually transform into a mixed layer containing F, Cs, and H2O species. When annealing, H2O molecules can be detected up to 200 K from the mixed F-Cs-H2O layer (while for pure H2O desorption is essentially complete at 165 K); a water network is not formed under these conditions, and all H2O molecules are involved in bonding with Cs+ and F- ions. When CsF is deposited at 120 K on sufficiently thick water multilayers, full solvation of both F and Cs takes place, even for the species closest to the surface, as long as the stoichiometry remains CsF.(H2O)n with n > 3.  相似文献   

11.
In these experiments, a few bilayers of D(2)O were vapor-deposited on a pure crystalline H(2)O ice film or an ice film doped with a small amount of HCl. Upon deposition, H/D isotopic exchange quickly converted the D(2)O layer into an HDO-rich mixture layer. Infrared absorption spectroscopy followed the changes of the HDO from the initial HDO mixture layer to HDO isolated in the H(2)O ice film. This was possible because isolated HDO in H(2)O ice has a unique, sharp peak in the O-D stretch region that can be distinguished from the broad peak due to the initial HDO mixture layer. The absorbance of isolated HDO displayed first-order kinetics and was attributed to diffusion of HDO from the HDO-rich mixture layer into the underlying H(2)O ice film. While negligible diffusion was observed for pure ice films and for ice films with HCl concentrations up to 1 x 10(-4) mole fraction, diffusion of HDO occurred for higher concentrations of (2-20) x 10(-4) mole fraction HCl with a concentration-independent rate constant. The diffusion under these conditions followed Arrhenius behavior for T = 135-145 K yielding E(a) = 25 +/- 5 kJ/mol. The mechanism for the HDO diffusion involves either (i) molecular self-diffusion or (ii) long-range H/D diffusion by a series of multiple proton hop and orientational turn steps. While these spectroscopic results compare favorably with recent studies of molecular self-diffusion in low-temperature ice films, the diffusion results from all the ice film studies at low temperatures (ca. T < 170 K) differ from earlier bulk ice studies at higher temperatures (ca. T > 220 K). A comparison and discussion of the various diffusion studies are included in this report.  相似文献   

12.
Gas-liquid scattering experiments are used to explore collisions and reactions of HCl and DCl with 12 mol% LiBr solutions of H(2)O and D(2)O at 208-218 K. These ~6 M aqueous salt solutions have vapor pressures just below 0.01 Torr, requiring special consideration of the effects of gas-vapor collisions. We find that impinging HCl molecules readily equilibrate on the surface of the solution even at incident energies of 90 kJ mol(-1). Approximately 90% of the thermalized HCl molecules dissolve and dissociate for long times in the cold salty solution, while the remaining 10% desorb from the surface intact. There is no evidence for rapid, interfacial conversion of HCl into DCl, in striking contrast to previous observations of distinct submicrosecond DCl→HCl exchange in collisions of DCl with salty glycerol at 292 K. These results indicate that cold salty water efficiently captures impinging HCl molecules and suppresses interfacial proton exchange, most likely because of the long interaction times of the HCl molecules in contact with the cold surface and because of facile transport of H(+) and Cl(-) from the interfacial region into the bulk solution.  相似文献   

13.
Adsorption of hydrogen chloride (HCl) on water ice films is studied in the temperature range of 100-140 K by using Cs+ reactive ion scattering (Cs+ RIS), low energy sputtering (LES), and temperature-programmed-desorption mass spectrometry (TPDMS). At 100 K, HCl on ice partially dissociates to hydronium and chloride ions and the undissociated HCl exists in two distinct molecular states (alpha- and beta-states). Upon heating of the ice films, HCl molecules in the alpha-state desorb at 135-150 K, whereas those in the beta-state first become ionized and then desorb via recombinative reaction of ions at 170 K. An adsorption kinetics study reveals that HCl adsorption into the ionized state is slightly favored over adsorption into the molecular states at 100 K, leading to earlier saturation of the ionized state. Between the two molecular states, the beta-state is formed first, and the alpha-state appears only at high HCl coverage. At 140 K, ionic dissociation of HCl is completed. The resulting hydronium ion can migrate into the underlying sublayer to a depth <4 bilayers, suggesting that the migration is assisted by self-diffusion of water molecules near the surface. When HCl is covered by a water overlayer at 100 K, its ionization efficiency is enhanced, but a substantial portion of HCl remains undissociated as molecules or contact ion pairs. The observation suggests that three-dimensional surrounding by water molecules does not guarantee ionic dissociation of HCl. Complete ionization of HCl requires additional thermal energy to separate the hydronium and chloride ions.  相似文献   

14.
The reaction of cis-1,2-dichloroethene (cis-DCE) on Pd(111) has been investigated by temperature-programmed desorption, laser-induced thermal desorption, Auger electron spectroscopy, and Fourier transform reflection absorption infrared spectroscopy. Below 130 K, molecularcis-DCE aggregates, resulting in only about 30% of the molecules from exposures below saturation significantly interacting with the palladium surface. The decomposition of cis-DCE generates the observable species H2, HCl, and ethylidyne. A fraction of cis-DCE molecules lose both chlorine atoms and add hydrogen to form ethylidyne, which is stable on the surface between 250 and 370 K. Hydrogen is liberated at about 420 K from cis-DCE surface fragments that immediately combine with surface chlorine and desorb as HCl. The most intense HCl desorption occurs at about 575 K and is due to surface chlorine reacting with either subsurface hydrogen or hydrogen from the remaining surface alkyl fragments. No carbon-containing species desorb from the decomposition of cis-DCE.  相似文献   

15.
We measured the incorporation of adsorbed alkanes in and their desorption from the amorphous solid water (ASW) by means of secondary ion mass spectroscopy and temperature programmed desorption. The heavier alkanes such as butane and hexane are incorporated completely in the bulk of the nonporous ASW layer below 100 K probably due to the preferential formation of ice structures around the solute molecules. The self-diffusion of water molecules occurs above the glass transition temperature (136 K). The liquid water emerges above 165 K, as evidenced by simultaneous occurrence of the dehydration of alkanes and the morphological change of the water layer induced by the surface tension.  相似文献   

16.
The fate of DCl molecules striking pure glycerol and a 2.6 M NaI-glycerol solution is investigated using scattering, uptake, and residence time measurements. We find that dissolved Na+ and I- ions alter every gas-liquid pathway from the moment of contact of DCl with the surface to its eventual emergence as HCl. In particular, the salt enhances both trapping-desorption of DCl and interfacial DCl --> HCl exchange at the expense of DCl entry into the bulk solution. The reduced entry and enhanced desorption of thermalized DCl molecules are interpreted by assuming that Na+ and I- ions bind to interfacial OH groups and tie up surface sites that would otherwise capture incoming DCl molecules. These ion-glycerol interactions may also be responsible for enhancing interfacial D --> H exchange by disrupting the interfacial hydrogen bond network that carries the newly formed H+ ion away from its Cl- pair. This disruption may increase the fraction of interfacial Cl- and H+ that recombine and desorb immediately as HCl before the ions separate and diffuse deeply into the bulk.  相似文献   

17.
The interaction of water with the BaF2(111) single crystal surface is investigated using the helium atom scattering technique. It is found that H2O forms a long-range ordered two-dimensional (2D) phase with (1 x 1) translational symmetry already after an exposure of 3 L (1 L=10(-6) Torr s) at temperatures below 150 K. The activation energy for desorption of the saturated 2D phase, which is assigned to a bilayer, is estimated to be 46+/-2 kJ mol(-1), corresponding to a desorption temperature of 165 K. The desorption of multilayers was observed at 150 K, consistent with a binding energy of 42+/-2 kJ mol(-1). Before completion and after desorption of the saturated 2D phase, a superstructure consistent with a disordered (square root of 3 x square root of 3)R30 degrees lattice has been observed, which is attributed to the first layer of water with a coverage of one molecule per surface unit cell, in accordance with recent theoretical studies. Desorption of this phase is observed at temperatures above 200 K, consistent with an unexpectedly strong bonding of the molecules to the substrate.  相似文献   

18.
The structure and energetics of thin water overlayers on the (101) surface of TiO(2)-anatase have been studied through first-principles molecular dynamics simulations at T = 160 K. At one monolayer coverage, H(2)O molecules are adsorbed at the 5-fold Ti sites (Ti(5c)), forming an ordered crystal-like 2D layer with no significant water-water interactions. For an adsorbed bilayer, H(2)O molecules at both Ti(5c) and bridging oxygen (O(2c)) sites form a partially ordered structure, where the water oxygens occupy regular sites but the orientation of the molecules is disordered; in addition, stress-relieving defects are usually present. When a third layer is adsorbed, very limited parallel and perpendicular order is observed above the first bilayer. The calculated energetics of multilayer adsorption is in good agreement with recent temperature-programmed desorption data.  相似文献   

19.
Isotopic H/D exchange between coadsorbed acetone and water on the TiO2(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (O2 oxidation and mild vacuum reduction). Coadsorbed acetone and water interact repulsively on reduced TiO2(110) on the basis of results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 monolayers (ML) of a 1 ML d6-acetone on the reduced surface (vacuum annealed at 850 K to a surface oxygen vacancy population of 7%) exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high-temperature region of the d6-acetone TPD spectrum at approximately 340 K. The effect was confirmed with combinations of d0-acetone and D2O. The extent of exchange decreased on the reduced surface for water coverages above approximately 0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when surface oxygen vacancies were pre-oxidized with O2 prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d1- or d5-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at approximately 390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites, and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.  相似文献   

20.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号