首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monolayers of mercaptoundecanol and mercaptoundecanoic acid were prepared on Au(111) films, immersed in aqueous solutions, and probed by frequency-modulation atomic force microscopy. The pN-order tip-surface force was observed over the monolayers as a function of vertical and lateral coordinates, together with the topography of the monolayers. The observed force distribution was modulated between adjacent OH endgroups in the mercaptoundecanol monolayer, as opposed to on top of COOH and COO(-) endgroups in the mercaptoundecanoic acid monolayer. Models of the interfacial hydrogen bond between water and the endgroups were proposed. The force distribution was insensitive to the electrolyte composition. There was no qualitative sign of tip-induced confinement of water.  相似文献   

2.
We evaluated the binding affinity of peptide probes for profilin (protein) using force curve measurement techniques and atomic force microscopy (AFM). The peptide probes designed and synthesized for this investigation were H-A3GP5GP5GP5G-OH (1), H-A3GP5G-OH (2), H-A3G7-OH (3), and H-A3G-OH (4). Each peptide probe was immobilized on a cantilever tip, and the interaction force to profilin, immobilized on a mica substrate, was examined by force curve measurements. The retraction forces obtained showed a sequence-dependent affinity of the peptide probe for profilin. The retraction force for peptide probe 1 was the largest of the four probes examined, and it confirmed that peptide probe 1 has high affinity for profilin. The single molecular retraction force between peptide probe 1 and profilin was estimated to be 96 pN, as determined by Gaussian fitting to the histogram of the retraction forces.  相似文献   

3.
Cyclodextrin derivatives prepared to mimic a membrane active antibacterial peptide polymyxin B strongly permeabilized bacterial membrane and inhibited bacterial proliferation.  相似文献   

4.
We report on a novel technique to nucleate nanometer-sized droplets on a solid substrate and to image them with minimal perturbation by noncontact atomic force microscopy (NC-AFM). The drop size can be accurately controlled, thus permitting hysteresis measurements. We have studied the nanoscale wettability of several methyl-terminated substrates prepared by the self-assembly of organic molecules. These substrates are alkyltrichlorosilanes on silica, alkylthiols on gold, alkyl chains on hydrogen-terminated silicon, and crystalline hexatriacontane chains on silica. For each of these systems, we report a deviation of the wetting contact angle from the macroscopic value, and we discuss this effect in term of mesoscale surface heterogeneity and long-range solid-liquid interactions.  相似文献   

5.
Aggrecan is a bottlebrush shaped macromolecule found in the extracellular matrix of cartilage. The negatively charged glycosaminoglycan (GAG) chains attached to its protein backbone give aggrecan molecules a high charge density, which is essential for exerting high osmotic swelling pressure and resisting compression under external load. In solution, aggrecan assemblies are insensitive to the presence of calcium ions, and show distinct osmotic pressure versus concentration regimes. The aim of this study is to investigate the effect of ionic environment on the structure of aggrecan molecules adsorbed onto well‐controlled mica surfaces. The conformation of the aggrecan was visualized using Atomic Force Microscopy. On positively charged APS mica the GAG chains of the aggrecan molecules are distinguishable, and their average dimensions are practically unaffected by the presence of salt ions. With increasing aggrecan concentration they form clusters, and at higher concentrations they form a continuous monolayer of conforming molecules. On negatively charged mica, the extent of aggrecan adsorption varies with salt composition. Understanding aggrecan adsorption onto a charged surface provides insight into its interactions with bone and implant surfaces in the biological milieu. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
To gain insight into the interactions between fengycin and skin membrane lipids, mixed fengycin/ceramide monolayers were investigated using atomic force microscopy (AFM) (monolayers supported on mica) and surface pressure-area isotherms (monolayers at the air-water interface). AFM topographic images revealed phase separation in mixed monolayers prepared at 20 degrees C/pH 2 and composed of 0.25 and 0.5 fengycin molar ratios, in the form of two-dimensional (2-D) hexagonal crystalline domains of ceramide surrounded by a fengycin-enriched fluid phase. Surface pressure-area isotherms as well as friction and adhesion AFM images confirmed that the two phases had different molecular orientations: while ceramide formed a highly ordered phase with crystalline chain packing, fengycin exhibited a disordered fluid phase with the peptide ring lying horizontally on the substrate. Increasing the temperature and pH to values corresponding to the skin parameters, i.e., 37 degrees C/pH 5, was found to dramatically affect the film organization. At low fengycin molar ratio (0.25), the hexagonal ceramide domains transformed into round domains, while at higher ratio (0.5) these were shown to melt into a continuous fengycin/ceramide fluid phase. These observations were directly supported by the thermodynamic analysis (deviation from the additivity rule, excess of free energy) of the monolayer properties at the air-water interface. Accordingly, this study demonstrates that both the environmental conditions (temperature, pH) and fengycin concentration influence the molecular organization of mixed fengycin/ceramide monolayers. We believe that the ability to modulate the formation of 2-D domains in the skin membrane may be an important biological function of fengycin, which should be increasingly investigated in future pharmacological research.  相似文献   

7.
We demonstrate the creation of a protein multilayer which utilises the high affinity interaction between streptavidin and biotin and incorporates a peptidic spacer. Surface plasmon resonance measurements enabled us to monitor the construction of the multilayer in real time. Atomic force microscopy was utilised to determine surface functionality at each stage of the multilayer construction, allowing us to investigate the associated mechanical properties. In this context we observed an increase in biomolecular stretching on the formation of the multilayer. We demonstrate, utilising circular dichroism, that variations in the solvent can affect the secondary structure of the peptide linker and hence its mechanical properties. Trifluoroethanol titrations on the assembled system indicate that the multilayer properties are also stimuli responsive with regard to solvent conditions. These results indicate that the multilayer stretch before cleavage is increased in the presence of trifluoroethanol. This was not expected from the study of the individual linker alone, indicating the need to study the system as a whole as opposed to the isolated components.  相似文献   

8.
There is a need to know the nanostructure of pressure-sensitive adhesive (PSA) films obtained from waterborne polymer colloids so that it can be correlated with properties. Intermittent-contact atomic force microscopy (AFM) of an acrylic waterborne PSA film identifies two components, which can be attributed to the polymer and the solids in the serum (mainly surfactant). It is found that when the average AFM tapping force, F(av), is relatively low, the polymer particles appear to be concave. But when F(av) is higher, the particles appear to have a convex shape. This observation is explained by a height artefact caused by differences in the indentation depths into the two components that vary with the tapping amplitude and F(av). To achieve the maximum contrast between the polymer and serum components, F(av) should be set such that the indentation depths are as different as possible. Unlike what is found for the height images, the phase contrast images of the PSA do not show a reversal in contrast over the range of tapping conditions applied. The phase images are thus reliable in distinguishing the two components of the PSA according to their viscoelastic properties. At the surface of films dried at room temperature, the serum component is found in localized regions within permanent depression into the film.  相似文献   

9.
Multi-walled carbon nanotubes (MW-CNT) inside a polyamide-6 (PA6)-MW-CNT composite were visualized by atomic force microscopy (i) in a field-assisted intermittent contact and (ii) in the tunneling (TUNA) mode. Individual buried MW-CNTs were clearly discerned within the PA6 matrix. An average diameter of 33 ± 5 nm of the MW-CNTs was determined based on field-assisted intermittent contact mode AFM images, which is consistent with the expected size of PA6-coated MW-CNTs. Single well dispersed MW-CNTs that are located in the sub-surface region of the composite were also observed in the TUNA mode. These new AFM approaches circumvent the tedious sample preparation based on ultramicrotoming required for high resolution electron microscopy studies to obtain “in-depth” morphological information and hence are expected to facilitate the analysis of CNT-based and other nanocomposites in the future.  相似文献   

10.
Thiolated self-assembled monolayers of carbohydrates may serve as useful polyvalent tools to mimic the organized presentation of such molecules at the cell surface. SAMs presenting the disaccharide maltose as a neoglycoconjugate were produced, and the structure was studied by high resolution atomic force microscopy. The molecules form highly ordered structures on a gold (111) surface, with lattice parameters determined by the linker moiety rather than the headgroup.  相似文献   

11.
Sonicated small unilamellar egg yolk phosphatidylcholine (EggPC) vesicles were investigated using atomic force microscopy (AFM) imaging and force measurements. Three different topographies (convex, planar, and concave shape) of the EggPC vesicles on the mica surface were observed by tapping mode in fluid, respectively. It was found that the topography change of the vesicles could be attributed to the interaction force between the AFM tip and vesicles. Force curves between an AFM tip and an unruptured vesicle were obtained in contact mode. During approach, two breaks corresponding to the abrupt penetration of upper and lower bilayer of vesicle were exhibited in the force curve. Both breaks spanned a distance of around 4 nm close to the EggPC bilayer thickness. Based on Hertz analysis of AFM approach force curves, the Young's modulus (E) and the bending modulus (kc) for pure EggPC vesicles were measured to be (1.97 +/- 0.75) x 10(6)Pa and (0.21 +/- 0.08) x 10(-19)J, respectively. The results show that the AFM can be used to obtain good images of intact and deformed vesicles by tapping mode, as well as to probe the integrity and bilayer structure of the vesicles. AFM force curve compare favorably with other methods to measure mechanical properties of soft samples with higher spatial resolution.  相似文献   

12.
Surface forces between LB films of metal-chelating lipids in water have been studied using colloidal probe atomic force microscopy. The LB films of an amphiphile functionalized by the iminodiacetic acid group were prepared on hydrophobic glass substrates. The electric double layer repulsion operated between these LB film surfaces changed depending on pH reflecting the different protonation states of the iminodiacetic acid groups. The titration curve of the iminodiacetic acid monolayer was obtained from the force profiles. The Cu2+ complexation process was also monitored by measuring the force profiles at various Cu2+ ion concentrations.  相似文献   

13.
The force distance (F-D) curves of polytert-butyl acrylate (PtBuA) films have been studied by atomic force microscopy with various probing frequencies from 20 to 70 °C. The adhesion force is found to increase as the temperature increasing, which is corresponding to the glass-to-rubber transition of the polymer film. The F-D curve shows a typical shape in the case of about 2.5 nN applied force, but a break-free tail occurs in the case of about 24 nN applied force when the probing frequency is within an appropriate ranges, in which the polymer film transfers from the glass state to the glassy-rubbery state. We attribute the break-free tail to that the segments of PtBuA chains can be resonantly adhered to and released from the tip. Our observation indicates that the polymer segments adhered to the tip can be enhanced by their relaxation during the glassy-rubbery transition, and the average activation energy of the relaxation is estimated as about 2.1 eV.  相似文献   

14.
The adsorption of mixed terminally aminated organosilyl compounds with long-chain n-alkyltrichlorosilanes on silica substrates has been studied by FTIR and AFM to deposit and study DNA. By optimization of deposition conditions, the mixed monolayers were found to be well organized and homogeneous. The amino group was protected to obtain a reproducible grafting and then deprotected after the film formation. In addition, atomic force microscopy (AFM) studies in both dynamical modes, amplitude modulation and frequency modulation, reveal that the layer behaves as a fluid as measured by the tip-cantilever and has a smaller characteristic time than the tip-cantilever. For three amplitudes, the experimental frequency shifts have been modeled for a fluidlike layer crossed by the tip. Finally, we show that this new fluidlike monolayer is suitable for DNA deposition and AFM studies.  相似文献   

15.
We have investigated the growth of octadecylsiloxane (ODS) self-assembled monolayers on mica. Freshly cleaved muscovite mica and octadecyltrichlorosilane (OTS) dissolved in toluene (c = 1.0 mmol/L) have been used as substrate and precursor, respectively. The water content of the adsorption solution was between 14.6 and 16.6 mmol/L. Adsorption experiments were carried out in a temperature range between 5 and 45 degrees C, and the obtained submonolayer ODS films were characterized with atomic force microscopy (AFM). Besides the morphology of the films, also information on the surface coverage has been obtained by quantitative evaluation of the AFM images. Depending on the temperature, evidence for both ordered and disordered expanded ODS phases has been found. The pronounced maximum in surface coverage--in contrast to adsorption on silicon substrates--at a temperature of about 27 degrees C and the different morphology of the submonolayer films as compared to silicon substrates could be explained in terms of a deposition, diffusion, and aggregation (DDA) model.  相似文献   

16.
Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces are not the driving forces for adhesion of the four strains. Rather, the observation of sawtooth force-distance patterns on the surface of biofilm positive strains documents the presence of modular proteins such as Aap that may mediate cell adhesion. Treatment of two biofilm positive strains with two chemical inhibitor compounds leads to a loss of adhesion, suggesting that AFM could be a valuable tool to screen for anti-adhesion molecules.  相似文献   

17.
Atomic force microscopy (AFM) was used to directly investigate the morphology and mechanical properties of blastomeres during the embryo development. With AFM imaging, the surface topography of blastomeres from two‐cell, four‐cell, and eight‐cell stages was visualized, and the AFM images clearly revealed the blastomere's morphological changes during the different embryo developmental stages. The section measurements of the AFM topography images of the blastomeres showed that the axis of the embryos nearly kept constant during the two‐cell, four‐cell, and eight‐cell stages. With AFM indenting, the mechanical properties of living blastomeres from several embryos were measured quantitatively under physiological conditions. The results of mechanical properties measurements indicated that the Young's modulus of the two blastomeres from two‐cell embryo was different from each other, and the four blastomeres from the four‐cell embryo also had variable Young's modulus. Besides, the blastomeres from two‐cell embryos were significantly harder than blastomeres from four‐cell embryos. These results can improve our understanding of the embryo development from the view of cell mechanics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The mechanical properties of glassy films and glass surfaces have been studied using an atomic force microscope (AFM) through various imaging modes and measuring methods. In this paper, we discuss the viscoelastic response of a glassy surface probed using an AFM. We analyzed the force-distance curves measured on a glassy film or a glassy surface at temperatures near the glass transition temperature, Tg, using a Burgers model. We found that the material's characteristics of reversible anelastic response and viscous creep can be extracted from a force-distance curve. Anelastic response shifts the repulsive force-distance curve while viscous creep strongly affects the slope of the repulsive force-distance curve. When coupled with capillary force, due to the condensation of a thin layer of liquid film at the tip-surface joint, the anelasticity and viscous creep can alter the curve significantly in the attractive region.  相似文献   

19.
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.  相似文献   

20.
The penetration of bovine serum albumin (BSA) into dipalmitoylphosphatidylglycerol (DPPG) monolayers was observed using atomic force microscopy (AFM) and surface pressure measurements. The effects of surface pressure, amount of BSA and the addition of ganglioside GM1 (GM1) were investigated. The surface pressure of the DPPG monolayer was increased by the penetration of BSA, and the increase in surface pressure was greater in the liquid-expanded film than that in the liquid-condensed film. The AFM images indicated that BSA penetrated into the DPPG monolayer. The amount of BSA that penetrated into the DPPG monolayer increased with time and with the amount of BSA added. On the contrary, the AFM image showed that BSA penetration into the mixed DPPG/GM1 (9 : 1) monolayer scarcely occurred. GM1 inhibited the penetration of BSA into the DPPG monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号