首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene glycol) (PEG 4000) and bovine serum albumin (BSA) were investigated with the purpose of evaluating their influence on enzymatic hydrolysis of sugarcane bagasse. Effects of these supplements were assayed for different enzymatic cocktails (Trichoderma harzianum and Penicillium funiculosum) that acted on lignocellulosic material submitted to different pretreatment methods with varying solid (25 and 100 g/L) and protein (7.5 and 20 mg/g cellulose) loadings. The highest levels of glucose release were achieved using partially delignified cellulignin as substrate, along with the T. harzianum cocktail: increases of 14 and 18 % for 25 g/L solid loadings and of 33 and 43 % for 100 g/L solid loadings were reached for BSA and PEG supplementation, respectively. Addition of these supplements could maintain hydrolysis yield even for higher solid loadings, but for higher enzymatic cocktail protein loadings, increases in glucose release were not observed. Results indicate that synergism might occur among these additives and cellulase and xylanases. The use of these supplements, besides depending on factors such as pretreatment method of sugarcane bagasse, enzymatic cocktails composition, and solid and protein loadings, may not always lead to positive effects on the hydrolysis of lignocellulosic material, making it necessary further statistical studies, according to process conditions.  相似文献   

2.
3.
Over the last two decades, more and more applications of sophisticated sensor technology have been described in the literature on upstreaming and downstreaming for biotechnological processes (Middendorf et al. J Biotechnol 31:395–403, 1993; Lausch et al. J Chromatogr A 654:190–195, 1993; Scheper et al. Ann NY Acad Sci 506:431–445, 1987), in order to improve the quality and stability of these processes. Generally, biotechnological processes consist of complex three-phase systems—the cells (solid phase) are suspended in medium (liquid phase) and will be streamed by a gas phase. The chemical analysis of such processes has to observe all three phases. Furthermore, the bioanalytical processes used must monitor physical process values (e.g. temperature, shear force), chemical process values (e.g. pH), and biological process values (metabolic state of cell, morphology). In particular, for monitoring and estimation of relevant biological process variables, image-based inline sensors are used increasingly. Of special interest are sensors which can be installed in a bioreactor as sensor probes (e.g. pH probe). The cultivation medium is directly monitored in the process without any need for withdrawal of samples or bypassing. Important variables for the control of such processes are cell count, cell-size distribution (CSD), and the morphology of cells (Höpfner et al. Bioprocess Biosyst Eng 33:247–256, 2010). A major impetus for the development of these image-based techniques is the process analytical technology (PAT) initiative of the US Food and Drug Administration (FDA) (Scheper et al. Anal Chim Acta 163:111–118, 1984; Reardon and Scheper 1995; Schügerl et al. Trends Biotechnol 4:11–15, 1986). This contribution gives an overview of non-invasive, image-based, in-situ systems and their applications. The main focus is directed at the wide application area of in-situ microscopes. These inline image analysis systems enable the determination of indirect and direct cell variables in real time without sampling, but also have application potential in crystallization, material analysis, polymer research, and the petrochemical industry.
Figure
Photo of an In-situ microscope manufactured by Sartorius Stedim Biotech (Göttingen, Germany)  相似文献   

4.
Sweet sorghum bagasse (SSB) was steam pretreated in the conditions of 190 °C for 5 min to assess its amenability to the pretreatment and enzymatic hydrolysis. Results showed that pretreatment conditions were robust enough to pretreat SSB with maximum of 87% glucan and 72% xylan recovery. Subsequent enzymatic hydrolysis showed that the pretreated SSB at 2% substrate consistency resulted in maximum of 70% glucan-glucose conversion. Increasing substrate consistency from 2% to 16% led to a significant reduction in glucan conversion. However, the decrease ratio of glucan-glucose conversion was the minimum when the consistency increased from 2% to 12%. When the pretreated SSB consistency of 12% was applied for hydrolysis, increase in cellulase loading from 7.5 up to 20 filter paper units (FPU)/g glucan resulted only in 14% increase in glucan-glucose conversion compared to 20% increase with cellulase loading varying from 2.5 to 7.5 FPU/g glucan. More than 10 cellobiase units (CBU)/g glucan β-glucosidase supplementation had no noticeable improvement on glucan-glucose conversion. Additionally, supplementation of xylanase was found to significantly increase glucan-glucose conversion from 50% to 80% with the substrate consistency of 12%, when the cellulase and β-glucosidase loadings were at relatively low enzyme loadings (7.5 FPU/g and 10 CBU/g glucan). It appeared that residual xylan played a critical role in hindering the ease of hydrolysis of SSB. A proper xylanase addition was suggested to achieve a high hydrolysis yield at relatively high substrate consistency with relatively low enzyme loadings.  相似文献   

5.
Cellulases are the major components of multienzyme systems applied in processes of bioconversion of renewable lignocellulosic feedstocks to various useful products. The hydrolytic efficiency of enzyme mixes based on recombinant wild-type endoglucanase II, cellobiohydrolases I and II from the Penicillium verruculosum fungus (in the presence of Aspergillus niger β-glucosidase) with mixes of mutant forms of these enzymes in the hydrolysis of cellulosic materials is compared, and the influence of temperature and substrate concentration on the glucose yield is studied. The mutant cellulases represented proteins, in which N-linked glycans were partially removed using site-directed mutagenesis. In the hydrolysis of microcrystalline cellulose and milled aspen wood by mixes of mutant cellulases, the yields of glucose after 24–72 h of an enzymatic reaction were higher by 31–38% and 11–27%, respectively, than those for the compositions based on the wild-type enzymes. The highest product concentrations, using mutant enzyme compositions, are achieved at 50°С when the hydrolysis temperature is varied in the range of 40 to 60°С. Increasing the substrate concentration in the reaction system from 5 to 50 g/L (while maintaining the enzyme dosage at the same level) led to a 2.6–2.8-fold increase in the glucose yield, accompanied by a decrease in the cellulose conversion degree.  相似文献   

6.
In this study, the applicability of a “fed-batch” strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a β-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.  相似文献   

7.
8.
In the preceding article, “Perspective: Pre-chemistry conformational changes in DNA polymerase mechanisms” contributed by Schlick and coworkers as well as previous studies of these workers (Schlick et al. in Theor Chem Acc 131:1287, 2012; Radhakrishnan and Schlick in J Am Chem Soc 127:13245–13252, 2005; Radhakrishnan and Schlick in Biochem Biophys Res Commun 350:521–529, 2006; Radhakrishnan et al. in Biochemistry 45:15142–15156, 2006; Radhakrishnan and Schlick in Proc Natl Acad Sci USA 101:5970–5975, 2004) have argued that the conformational changes preceding the chemical step contribute to DNA synthesis and to the fidelity of DNA polymerases. In one of our previous investigations (Ram Prasad and Warshel in Proteins 79:2900–2919, 2011), we argued and showed that as long as the free energy barriers associated with any of the prechemistry steps are not rate limiting, they could not contribute to the catalysis and then to the fidelity. Though all our arguments are based on exact and well-defined scientific logics, Schlick and coworkers seem to overlook some of the clear conditions in these arguments and in particular the requirement that the chemical step is rate limiting in their arguments that the prechemistry barriers contribute to the catalysis. In fact, as long as the prechemistry steps are not rate limiting, we have shown that the enzymes cannot carry the memory of the previous steps. We also address other potential misunderstandings about several key issues; First, we clarify that it is misleading to relate the prechemistry proposal to the clear fact that the substrate-induced conformational changes determine the final preorganization (the issue is the height of the barrier of the enzyme substrate system and not the trivial fact that the enzyme has to change its structure when the substrate binds). Second, we address the presumed role of dynamical effects in enzyme catalysis and the assumption that any observable should be explored in studies of biological function even if they are not relevant to the given effect. Third, we clarify that the fidelity cannot be explained or quantified by invoking the induced fit or conformational selection effects but by evaluating the free energy contributions to the rate-limiting steps from the structures of the corresponding systems (that of course can reflect the induce fit structural changes). Overall, we put a major emphasis on clarifying what is the prechemistry proposal and thus on trying to force the reader to focus on the only real controversy. We of course dismiss any implication that our studies cannot explore mutational effects as we actually pioneered such computational studies and we clarify that in studies of chemical rates, the focus must be placed on evaluating the chemical barriers, rather than on irrelevant factors, but that the calculations of the chemical barriers must consider all the factors that determine this barrier (including metal ions) and also examine if needed different problematic proposals such as dynamical effects, tunneling, and prechemistry.  相似文献   

9.
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 °C, 20 FPU g−1 substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l−1 was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.  相似文献   

10.
Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.  相似文献   

11.
Recently, three computational algorithms for evaluating the determinant of quasi penta-diagonal matrices have been proposed by El-Mikkawy and Rahmo (Comput Math Appl 59:1386–1396, 2010), by Neossi Nguetchue and Abelman (Appl Math Comput 203:629–634, 2008), and by Jia et al. (Int J Comput Math 89:851–860, 2013), respectively. In the current paper, two novel algorithms with less computational costs are proposed for the determinant evaluation of general quasi penta-diagonal matrices and quasi penta-diagonal Toeplitz matrices. Furthermore, three numerical experiments are given to show the performance of our algorithms. All of the numerical computations were performed on a computer with aid of programs written in MATLAB.  相似文献   

12.
Current technology for conversion of biomass to ethanol is an enzyme-based biochemical process. In bioethanol production, achieving high sugar yield at high solid loading in enzymatic hydrolysis step is important from both technical and economic viewpoints. Enzymatic hydrolysis of cellulosic substrates is affected by many parameters, including an unexplained behavior that the glucan digestibility of substrates by cellulase decreased under high solid loadings. A comprehensive study was conducted to investigate this phenomenon by using Spezyme CP and Avicel as model cellulase and cellulose substrate, respectively. The hydrolytic properties of the cellulase under different substrate concentrations at a fixed enzyme-to-substrate ratio were characterized. The results indicate that decreased sugar yield is neither due to the loss of enzyme activity at a high substrate concentration nor due to the higher end-product inhibition. The cellulase adsorption kinetics and isotherm studies indicated that a decline in the binding capacity of cellulase may explain the long-observed but little-understood phenomenon of a lower substrate digestibility with increased substrate concentration. The mechanism how the enzyme adsorption properties changed at high substrate concentration was also discussed in the context of exploring the improvement of the cellulase-binding capacity at high substrate loading.  相似文献   

13.
Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures. With the use of Accellerase® (cellulase), high substrate loading decreased conversion yield. However, this was overcome if the enzyme was added between 12.5 and 20 FPU g substrate?1. Furthermore, this reaction condition facilitated continual stirring and enabled sequential additions (up to 50 % w/v) of paper to be made to the hydrolysis reaction, degrading nearly all (99 %) of the cellulose fibres and increasing the final concentration of glucose whilst simultaneously making high substrate concentrations achievable. Under optimal conditions (50 °C, pH 5.0, 72 h), digestions facilitate the production of glucose to much improved concentrations of up to 1.33 mol l?1.  相似文献   

14.
The action modes of an oligosaccharide-producing multifunctional amylase (OPMA) were investigated using glucose and some oligosaccharides as its substrates. OPMA did not cause the hydrolysis of maltose or isomaltose, but it catalyzed the α-1,6-transglycosylation of maltose to produce isomaltose or did the self-condensation of isomaltose to form isomaltotetraose and 4-O-α-isomaltosyl isomaltose. OPMA exhibited strong α-1,6-transglycosylation activity in addition to its α-1,4-hydrolytic activity on higher oligosaccharides substrates rather than bisaccharides. OPMA displayed high acceptor specificity in its transglycosylation or condensation reaction. OPMA seemed to only take glucose or isomaltose as the acceptor molecule in its transglycosylation or condensation reaction, which made glucose or isomaltose form higher products, and as a result, glucose or isomaltose were absent in the final products. In view of the simultaneously formation of several transglycosylation or condensation products, it was predicted that there might be separate donor and acceptor sites in OPMA’s active center and the fact that the catalytically active form of this enzyme included its homodimer or homotrimer supported this prediction. Accordingly, a special pathway, isomaltose pathway, for OPMA catalysis was proposed to emphasize the central or important signification of isomaltose in OPMA catalysis.  相似文献   

15.
16.
In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.  相似文献   

17.
The proof of a conjecture on the comparison of the energies of trees   总被引:1,自引:0,他引:1  
The energy of a graph is defined as the sum of the absolute values of the eigenvalues of the graph. In this paper, we first present a new method to directly compare the energies of two bipartite graphs, then also present some new techniques to compare the quasi-orders of some bipartite graphs. As the applications of these methods, we prove that a conjecture proposed by Wang and Kang (J Math Chem 47(3):937–958, 2010) is true. At the same time, our results also provide the simplified proofs of the main results of Wang and Kang (J Math Chem 47(3):937–958, 2010) and Li and Li (Electron J Linear Algebra 17:414–425, 2008).  相似文献   

18.
One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. α-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of α-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.  相似文献   

19.
In order to understand the product inhibition of enzymatic lignocellulose hydrolysis, the enzymatic hydrolysis of pretreated rice straw was carried out over an enzyme loading range of 2 to 30 FPU/g substrate, and the inhibition of enzymatic hydrolysis was analyzed kinetically based on the reducing sugars produced. It was shown that glucose, xylose, and arabinose were the main reducing sugar components contained in the hydrolysate. The mass ratio of glucose, xylose, and arabinose to the total reducing sugars was almost constant at 52.0?%, 29.7?% and 18.8?%, respectively, in the enzyme loading range. The reducing sugars exerted competitive inhibitory interferences to the enzymatic hydrolysis. Glucose, xylose, and arabinose had a dissociation constant of 1.24, 0.54 and 0.33?g/l, respectively. The inhibitory interferences by reducing sugars were superimposed on the enzymatic hydrolysis. The enzymatic hydrolysis could be improved by the removal of the produced reducing sugars from hydrolysate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号