首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green macroalgae are an abundant and undervalued biomass with a specific cell wall structure. In this context, different pretreatments, namely ethanol organosolv (Org), alkaline, liquid hot water (LHW), and ionic liquid (IL) pretreatments, were applied to the green macroalgae Ulva lactuca biomass and then evaluated. Their effects on chemical composition, biomass crystallinity, enzymatic digestibility, and theoretical ethanol potential were studied. The chemical composition analysis showed that the Org and LHW pretreatments allowed the highest glucan recovery (80.8 ± 3.6 and 62.9 ± 4.4 g/100 g DM, respectively) with ulvan (80.0 and 99.1%) and hemicellulose (55.0 and 42.3%) removal. These findings were in agreement with both thermogravimetric analysis and scanning electron microscopy results that confirm significant structural changes of the pretreated biomasses. It was found that the employed pretreatments did not significantly affect the cellulose crystallinity; however, they both increased the whole crystallinity and the enzymatic digestibility. This later reached 97.5% in the case of LHW pretreatment. Our results showed high efficiency saccharification of Ulva lactuca biomass that will constitute the key step of the implementation of a biorefinery process.  相似文献   

2.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210°C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.  相似文献   

3.
Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.  相似文献   

4.
One commonly cited factor that contributes to the recalcitrance of biomass is cellulose crystallinity. The present study aims to establish the effect of several pretreatment technologies on cellulose crystallinity, crystalline allomorph distribution, and cellulose ultrastructure. The observed changes in the cellulose ultrastructure of poplar were also related to changes in enzymatic hydrolysis, a measure of biomass recalcitrance. Hot-water, organo-solv, lime, lime-oxidant, dilute acid, and dilute acid-oxidant pretreatments were compared in terms of changes in enzymatic sugar release and then changes in cellulose ultrastructure measured by 13C cross polarization magic angle spinning nuclear magnetic resonance and wide-angle X-ray diffraction. Pretreatment severity and relative chemical depolymerization/degradation were assessed through compositional analysis and high-performance anion-exchange chromatography with pulsed amperometric detection. Results showed minimal cellulose ultrastructural changes occurred due to lime and lime-oxidant pretreatments, which at short residence time displayed relatively high enzymatic glucose yield. Hot water pretreatment moderately changed cellulose crystallinity and crystalline allomorph distribution, yet produced the lowest enzymatic glucose yield. Dilute acid and dilute acid-oxidant pretreatments resulted in the largest increase in cellulose crystallinity, para-crystalline, and cellulose-Iβ allomorph content as well as the largest increase in cellulose microfibril or crystallite size. Perhaps related, compositional analysis and Klason lignin contents for samples that underwent dilute acid and dilute acid-oxidant pretreatments indicated the most significant polysaccharide depolymerization/degradation also ensued. Organo-solv pretreatment generated the highest glucose yield, which was accompanied by the most significant increase in cellulose microfibril or crystallite size and decrease in relatively lignin contents. Hot-water, dilute acid, dilute acid-oxidant, and organo-solv pretreatments all showed evidence of cellulose microfibril coalescence.  相似文献   

5.
Pretreatment and enzymatic saccharification of corn fiber   总被引:14,自引:0,他引:14  
Corn fiber consists of about 20% starch, 14% cellulose, and 35% hemicellulose, and has the potential to serve as a low-cost feedstock for production of fuel ethanol. Several pretreatments (hot water, alkali, and dilute, acid) and enzymatic saccharification procedures were evaluated for the conversion of corn fiber starch, cellulose, and hemicellulose to monomeric sugars. Hot water pretreatment (121°C, 1 h) facilitated the enzymatic sacch arification of starch and cellulose but not hemicellulose. Hydrolysis of corn fiber pretreated with alkali un dersimilar conditions by enzymatic means gave similar results. Hemicellulose and starch components were converted to monomeric sugars by dilute H2SO4 pretreatment (0.5–1.0%, v/v) at 121°C. Based on these findings, a method for pretreatment and enzymatic saccharification of corn fiber is presented. It in volves the pretreatment of corn fiber (15% solid, w/v) with dilute acid (0.5% H2SO4, v/v) at 121°C for 1 h, neutralization to pH 5.0, then saccharification of the pretreated corn fiber material with commercial cellulase and β-glucosidase preparations The yield of monomeric sugars from corn fiber was typically 85–100% of the theoretical yield. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

6.
In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.  相似文献   

7.
Pretreatment is the crucial step to disrupt the recalcitrant structure of lignocellulosic biomass for improving the enzymatic hydrolysis efficiency. Typically, hydrothermal, organosolv and hydrotropic pretreatments are environmentally benign and effective methods. In this work, effects of hydrothermal, organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of bamboo were comprehensively compared. Hydrotropic pretreatment was more effective in removal lignin and xylose from bamboo fiber cell wall. However, the surface coverage by lignin and extractives were dramatically displaced during organosolv pretreatment as investigation by X-ray photoelectron spectroscopy. After pretreatments, the crystallinity of cellulose in pretreated substrates has a significant reduction, and pores were exposed on fiber surface. The residual content of acetyl and phenolic groups in hydrotropic pretreated substrates is lower than organosolv pretreated substrates. In order to deeply assess the delignification of pretreatments, the isolated lignins obtaining from pretreatments process were characterized by Fourier transform infrared spectroscopy also. It was revealed that hydrotropic lignin contained more phenolic hydroxyl group and syringyl units than organosolv lignin. Compared to hydrothermal and organosolv pretreatment, cellulase adsorption capacity of pretreated substrates was notably improved by hydrotropic pretreatment, which indicating the better enzyme accessibility of cellulose. Eventually, the maximum glucose yield was obtained from hydrotropic pretreated substrates.  相似文献   

8.
The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH.  相似文献   

9.
Sorghum is a tropical grass grown primarily in semiarid and drier parts of the world, especially areas too dry for corn. Sorghum production also leaves about 58 million tons of by-products composed mainly of cellulose, hemicellulose, and lignin. The low lignin content of some forage sorghums such as brown midrib makes them more digestible for ethanol production. Successful use of biomass for biofuel production depends on not only pretreatment methods and efficient processing conditions but also physical and chemical properties of the biomass. In this study, four varieties of forage sorghum (stems and leaves) were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy and X-ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and the enzymatic hydrolysis process. Forage sorghums with a low syringyl/guaiacyl ratio in their lignin structure were easy to hydrolyze after pretreatment despite the initial lignin content. Enzymatic hydrolysis was also more effective for forage sorghums with a low crystallinity index and easily transformed crystalline cellulose to amorphous cellulose, despite initial cellulose content. Up to 72% hexose yield and 94% pentose yield were obtained using modified steam explosion with 2% sulfuric acid at 140 °C for 30 min and enzymatic hydrolysis with cellulase (15 filter per unit (FPU)/g cellulose) and β-glucosidase (50 cellobiose units (CBU)/g cellulose).  相似文献   

10.
Chestnut shell (CS) is an agronomic residue mainly used for extraction of antioxidants or as adsorbent of metal ions. It also contains some polysaccharide that has not been considered as potential source of fermentable sugars for biofuel production until now. In this study, the effect of different pretreatment methods on CS was evaluated in order to obtain the greatest conversion of cellulose and xylan into fermentable sugars. Hot acid impregnation, steam explosion (acid-catalysed or not), and aqueous ammonia soaking (AAS) were selected as pretreatments. The pretreated biomass was subjected to saccharification with two enzyme cocktails prepared from commercial preparations, and evaluation of the best pretreatment and enzyme cocktail was based on the yield of fermentable sugars produced. As AAS provided the best result after preliminary experiments, enhancement of sugar production was attempted by changing the concentrations of ammonium hydroxide, enzymes, and CS. The optimal pretreatment condition was 10 % ammonium hydroxide, 70 °C, 22 h with CS at 5 % solid loading. After saccharification of the pretreated CS for 72 h at 50 °C and pH 5.0 with a cocktail containing cellulase (Accellerase 1500), beta-glucosidase (Accellerase BG), and xylanase (Accellerase XY), glucose and xylose yields were 67.8 and 92.7 %, respectively.  相似文献   

11.
Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast?. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.  相似文献   

12.
Switchgrass was used as a model feedstock to determine the influence of pretreatment conditions and biomass quality on enzymatic hydrolysis using different enzyme products. Dilute sulfuric acid and soaking in aqueous ammonia pretreatments were used to produce biomass with varied levels of hemicellulose and lignin sheathing. Pretreated switchgrass solids were tested with simple enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) with three commercial enzyme products: Accellerase 1000 (Genencor), Spezyme CP (Genencor)/Novozyme 188 (Novozymes), and Celluclast/Novozyme 188 (Novozymes). Enzymes were loaded on a common activity basis (FPU/g cellulose and CBU/g cellulose). Despite identical enzyme loadings, glucose yields were significantly different for both acid and alkaline pretreatments but differences diminished as hydrolysis progressed for acid-pretreated biomass. Cellobiose concentrations in Accellerase treatments indicated an initial β-glucosidase limitation that became less significant over time. SSF experiments showed that differences in glucose and ethanol yields could not be attributed to enzyme product inhibition. Yield discrepancies of glucose or ethanol in acid pretreatment, alkaline pretreatment, and acid pretreatment/SSF were as much as 15%, 19%, and 5%. These results indicate that standardized protocols for measuring enzyme activity may not be adequate for assessing activity using pretreated biomass substrates.  相似文献   

13.
In this study, ultrasound-assisted alkaline pretreatment is developed to evaluate the morphological and structural changes that occur during pretreatment of cellulose, and its effect on glucose production via enzymatic hydrolysis. The pretreated samples were characterized using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction to understand the change in surface morphology, crystallinity and the fraction of cellulose Iβ and cellulose II. The combined pretreatment led to a great disruption of cellulose particles along with the formation of large pores and partial fibrillation. The effects of ultrasound irradiation time (2, 4 h), NaOH concentration (1–10 wt%), initial particle size (20–180 μm) and initial degree of polymerization (DP) of cellulose on structural changes and glucose yields were evaluated. The alkaline ultrasonic pretreatment resulted in a significant decrease in particle size of cellulose, besides significantly reducing the treatment time and NaOH concentration required to achieve a low crystallinity of cellulose. More than 2.5 times improvement in glucose yield was observed with 10 wt% NaOH and 4 h of sonication, compared to untreated samples. The glucose yields increased with increase in initial particle size of cellulose, while DP had no effect on glucose yields. The glucose yields exhibited an increasing tendency with increase in cellulose II fraction as a result of combined pretreatment.  相似文献   

14.
Two commonly used chemical pretreatment processes, sulphuric acid, and sodium hydroxide, were tested to provide comparative performance data. A connection between solid to liquid ratio (S/L) and sugars released was observed with an increase in S/L ratio between 0.02 and 0.2. Enzymatic digestibility of 1 M of NaOH-pretreated corncobs were released 210.7 mg ml?1 of sugars. Further, compared with different concentrations of acid pretreatments at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5 M concentrations, sodium hydroxide pretreatment of corncob substantially increased accessibility and digestibility of cellulose. Another additional observation made was whole-cell and crude enzymatic hydrolysis of different concentrations of acid and NaOH (0.05, 0.1, 0.25 M)-treated materials released lower amount of sugars compared with the sugars released (310.9 mg ml?1) with whole-cell hydrolysis of 1 M of NaOH-treated corncobs. NaOH-pretreated corncobs contained higher content of sugars and which is more suitable for production of reducing sugars.  相似文献   

15.
Pseudostem of the Musa cavendishii banana plant was submitted to chemical pretreatments with acid (H2SO4 2%, 120 °C, 15 min) and with alkali (NaOH 3%, 120 °C, 15 min), saccharified by commercial enzymes Novozymes® (Cellic CTec2 and HTec2). The influences of the pretreatments on the degradation of the lignin, cellulose and hemicellulose, porosity of the surface, particle crystallinity, and yield in reducing sugars after saccharification (Y RS), were established. Different concentrations of biomass (70 and 100 g/L in dry matter (dm)), with different physical differences (dry granulated, crushed wet bagasse, and whole pseudostem), were used. The broth with the highest Y RS among the different strategies tested was evaporated until the concentration of reducing sugars (RS) was to the order of 100 g/L and fermented, with and without prior detoxification with active carbon. Fermentation was carried out in Erlenmeyer flasks, at 30 °C, initial pH 5.0, and 120 rpm. In comparison to the biomass without chemical pretreatment and to the biomass pretreated with NaOH, the acid pretreatment of 70 g/L of dry granulated biomass enabled greater digestion of hemicellulose, lower index of cellulose crystallinity, and higher Y RS (45.8 ± 0.7%). The RS increase in fermentation broth to 100 g/L, with posterior detoxification, presented higher productivity ethanol (Q P = 1.44 ± 0.02 g/L/h) with ethanol yield (Y P/RS) of 0.41 ± 0.02 g/g. The value of Q P was to the order of 75% higher than Q P obtained with the same broth without prior detoxification.  相似文献   

16.
This research quantified the enzymatic digestibility of the solid component and the microbial inhibition of the liquid component of pretreated aspen wood and cornstover hydrolysates. Products of liquid hot water and carbonic acid pretreatment were compared. Pretreatment temperatures tested ranged from 180 to 220°C, and reaction times were varied between 4 and 64 min. Both microbial inhibition rates and enzymatic hydrolysis rates showed no difference between pretreatments containing carbonic acid and those not containing no carbonic acid. Microbial inhibition increased as the reaction severity increased, but only above a midpoint severity parameter of 200°C for 16 min. Both the rates and yields of enzymatic hydrolysis displayed an increase from the lowest tested reaction severity to the highest tested reaction severity.  相似文献   

17.
Since cellulose accessibility has become more recognized as the major substrate characteristic limiting hydrolysis rates and glucan digestibilities, cellulose solvent-based lignocellulose pretreatments have gained attention. In this study, we employed cellulose solvent- and organic solvent-based lignocellulose fractionation using two cellulose solvents: concentrated phosphoric acid [~85?% (w/w) H3PO4] and an ionic liquid Butyl-3-methylimidazolium chloride ([BMIM]Cl). Enzymatic glucan digestibilities of concentrated phosphoric acid- and [BMIM]Cl-pretreated corn stover were 96 and 55?% after 72?h at five filter paper units of cellulase per gram of glucan, respectively. Regenerated amorphous cellulose by concentrated phosphoric acid and [BMIM]Cl had digestibilities of 100 and 92?%, respectively. Our results suggested that differences in enzymatic glucan digestibilities of concentrated phosphoric acid- and [BMIM]Cl-pretreated corn stover were attributed to combinatory factors. These results provide insights into mechanisms of cellulose solvent-based pretreatment and effects of residual cellulose solvents and lignin on enzymatic cellulose hydrolysis.  相似文献   

18.
Pretreatment is an essential step in biorefineries for improving digestibility of recalcitrant agricultural feedstocks prior to enzymatic hydrolysis to composite sugars, which can be further converted to fuels and chemicals. In this study, autohydrolysis by compressed liquid hot water (LHW) pretreatment of various tropical agricultural residues including sugarcane bagasse (BG), rice straw (RS), corn stover (CS), and empty palm fruit bunch (EPFB) was investigated. It was found that LHW pretreatment at 200 °C for 5–20 min resulted in high levels of hemicellulose solubilization into the liquid phase and marked improvement on enzymatic digestibility of the solid cellulose-enriched residues. The maximal yields of glucose and pentose were 409.8–482.7 mg/g and 81.1–174.0 mg/g of pretreated substrates, respectively. Comparative analysis based on severity factor showed varying susceptibility of biomass to LHW in the order of BG> RS> CS> EPFB. Structural analysis revealed surface modification of the pretreated biomass along with an increase in crystallinity index. Overall, 75.7–82.3 % yield of glucose and 27.4–42.4 % yield of pentose from the dried native biomass was recovered in the pretreated solid residues, while 18.3–29.7 % of pentoses were recovered in the liquid phase with dehydration by-product concentration under the threshold for ethanologens. The results suggest the potential of LHW as an efficient pretreatment strategy for implementation in biorefineries operated using various seasonal agricultural feedstocks.  相似文献   

19.
Lignocellulosic biomass is one of the most plentiful and potentially cheapest feedstocks for ethanol production. The cellulose component can be broken down into glucose by enzymes and then converted to ethanol by yeast. However, hydrolysis of cellulose to glucose is difficult, and some form of pretreatment is necessary to increase the susceptibility of cellulose to enzymatic attack. An analysis has been completed of two pretreatment options, dilute sulfuric acid hydrolysis and sulfur dioxide impregnated steam explosion, for two feedstocks, wheat straw and aspen wood chips. Detailed process flow sheets and material and energy balances were used to generate equipment cost information. A technical and economic analysis compared the two feedstocks for each of the two pretreatments. For the same pretreatment, sugars produced from aspen wood hydrolysis were cheaper because of the higher carbohydrate content of aspen, whereas dilute acid pretreatment is favored over acid-catalyzed steam explosion.  相似文献   

20.
Downregulated lignin transgenic black cottonwood (Populus trichocarpa) was used to elucidate the effect of lignin and xylan content on enzymatic saccharification. The lignin contents of three transgenic samples (4CL1-1, 4CL1-4, and CH8-1-4) were 19.3, 16.7, and 15.0?%, respectively, as compared with the wild type (21.3?%). The four pretreatments were dilute acid (0.1?% sulfuric acid, 185?°C, 30?min), green liquor (6?% total titratable alkali, 25?% sulfidity based on TTA, 185?°C, and 15?min.), autohydrolysis (185?°C, 30?min), and ozone delignification (25?°C, 30?min). Following the pretreatment, enzymatic saccharification was carried out using an enzyme charge of 5?FPU/g of substrates. The removal of lignin and hemicellulose varies with both the types of pretreatments and the lignin content of the transgenic trees. Due to the greatest removal of lignin, green liquor induced the highest sugar production and saccharification efficiency, followed by acid, ozone, and autohydrolysis in descending order. The results indicated that lignin is the main recalcitrance of biomass degradation. At a given lignin content, pretreatment with ozone delignification had lower saccharification efficiency than the other pretreatment methods due to higher xylan content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号