首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L?1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05?±?0.35 g L?1), lipid productivity (0.82?±?0.14 g L?1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.  相似文献   

2.
There is potential in the utilization of microalgae for the purification of wastewater as well as recycling the resource in the wastewater to produce biodiesel. The large-scale cultivation of microalgae requires pretreatment of the wastewater to eliminate bacteria and protozoa. This procedure is costly and complex. In this study, two methods of pretreatment, UV irradiation, and sodium hypochlorite (NaClO), in various doses and concentrations, were tested in the dairy wastewater. Combining the efficiency of biodiesel production, we proposed to treat the dairy wastewater with NaClO in the concentration of 30 ppm. In this condition, The highest biomass productivity and lipid productivity of Chlorella vulgaris reached 0.450 g L?1 day?1 and 51 mg L?1 day?1 after a 4-day cultivation in the dairy wastewater, respectively.  相似文献   

3.
In view of ever-growing demand of biodiesel, there is an urgent need to look for inexpensive and promising renewable raw material oils for its production. In this context, the aim of this study was to evaluate the potential use of industrial wastes for low-cost production of oils through microbial fermentation. Among the strains tested, Yarrowia lipolytica grew best and produced highest lipid when grown on decanter effluent from palm oil mill. When crude glycerol by-product from a biodiesel plant was added into the effluent as a co-substrate, Y. lipolytica produced a higher biomass of 3.21 g/L and a higher amount of lipid of 2.21 g/L which was 68 % of the dry weight. The scale up and process improvement in a 5-L bioreactor increased the biomass and lipid up to 5.53 and 2.81 g/L, respectively. A semi-continuous mode of operation was an effective mode for biomass enhancement while a fed-batch mode was effective for lipid enhancement. These yeast lipids have potential to be used as biodiesel feedstocks because of their similar fatty acid composition to that of plant oil.  相似文献   

4.
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.  相似文献   

5.
Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m3CH4 kgCODvinasse ?1. The highest productivity of Chlorella vulgaris biomass (70 mg l?1 day?1) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l?1 day?1. Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.  相似文献   

6.
CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate—more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7?×?107 cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3?×?107 cells/ml, respectively.  相似文献   

7.
Using microalgae to capture CO2 from flue gas is an ideal way to reduce CO2 emission, but this is challenged by the high cost of carbon capture and transportation. To address this problem, a bicarbonate-based integrated carbon capture and algae production system (BICCAPS) has been proposed, in which bicarbonate is used for algae culture, and the regenerated carbonate from this process can be used to capture more CO2. High-concentration bicarbonate is obligate for the BICCAPS. Thus, different strains of microalgae and cyanobacteria were tested in this study for their capability to grow in high-concentration NaHCO3. The highest NaHCO3 concentrations they are tolerant to were determined as 0.30 M for Synechocystis sp. PCC6803, 0.60 M for Cyanothece sp., 0.10 M for Chlorella sorokiniana, 0.60 M for Dunaliella salina, and 0.30 M for Dunaliella viridis and Dunaliella primolecta. In further study, biomass production from culture of D. primolecta in an Erlenmeyer flask with either 0.30 M NaHCO3 or 2 % CO2 bubbling was compared, and no significant difference was detected. This indicates BICCAPS can reach the same biomass productivity as regular CO2 bubbling culture, and it is promising for future application.  相似文献   

8.
The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4·7H2O (25 mg l?1) increased erythritol production by Y. lipolytica by 14.5 %. In the bioreactor culture with manganese ion addition, 47.1 g l?1 of erythritol was produced from 100.0 g l?1 of glycerol, which corresponded to volumetric productivity of 0.87 g l?1 h?1. The addition of Mn2+ enhanced the intracellular activity of erythrose reductase up to 24.9 U g?1 of dry weight of biomass (DW), hence, about 1.3 times more than in the control.  相似文献   

9.
The investigation for the first time assesses the efficacy of recycled de-oiled algal biomass extract (DABE) as a cultivation media to boost lipid productivity in Chlorella minutissima and its comparison with Bold’s basal media (BBM) used as control. Presence of organic carbon (3.8 ± 0.8 g/l) in recycled DABE resulted in rapid growth with twofold increase in biomass productivity as compared to BBM. These cells expressed four folds higher lipid productivity (126 ± 5.54 mg/l/d) as compared to BBM. Cells cultivated in recycled DABE showed large sized lipid droplets accumulating 54.12 % of lipid content. Decrement in carbohydrate (17.76 %) and protein content (28.12 %) with loss of photosynthetic pigments compared to BBM grown cells were also recorded. The fatty acid profiles of cells cultivated in recycled DABE revealed the dominance of C16:0 (39.66 %), C18:1 (29.41 %) and C18:0 (15.82 %), respectively. This model is self-sustained and aims at neutralizing excessive feedstock consumption by exploiting recycled de-oiled algal biomass for cultivation of microalgae, making the process cost effective.  相似文献   

10.
Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l?1dry weight and azadirachtin yield of 3.2 mg g?1 leading to a volumetric productivity of azadirachtin as 1.14 mg l?1 day?1. The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).  相似文献   

11.
This paper investigates the efficiency of the organic acids on the pretreatment of an industrially generated cotton gin waste for the removal of lignin, thereby releasing cellulose and hemicellulose as fermentable sugar components. Cotton gin waste was pretreated with various organic acids namely lactic acid, oxalic acid, citric acid, and maleic acid. Among these, maleic acid was found to be the most efficient producing maximum xylose sugar (126.05?±?0.74 g/g) at the optimum pretreatment condition of 150 °C, 500 mM, and 45 min. The pretreatment efficiency was comparable to the conventional dilute sulfuric acid pretreatment. A lignin removal of 88% was achieved by treating maleic acid pretreated biomass in a mixture of sodium sulfite and sodium chlorite. The pretreated biomass was further evaluated for the release of sugar by enzymatic hydrolysis and subsequently bioethanol production from hydrolysates. The maximum 686.13 g/g saccharification yield was achieved with maleic acid pretreated biomass which was slightly higher than the sulfuric acid (675.26 g/g) pretreated waste. The fermentation of mixed hydrolysates(41.75 g/l) produced 18.74 g/l bioethanol concentration with 2.25 g/l/h ethanol productivity and 0.48 g/g ethanol yield using sequential use of Saccharomyces cerevisiae and Pichia stipitis yeast strains. The production of bioethanol was higher than the ethanol produced using co-culture in comparison to sequential culture. Thus, it has been demonstrated that the maleic acid pretreatment and fermentation using sequential use of yeast strains are efficient for bioethanol production from cotton gin waste.  相似文献   

12.
Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L?1 molasses produced a high amount of biomass of 3.05 g L?1 with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L?1 and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L?1 with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.  相似文献   

13.
Accumulated carbohydrate in microalgae is promising feedstock for bioethanol fermentation. Selection of suitable cultivation conditions in semi-continuous cultivation is critical to achieve a high carbohydrate productivity. In the current study, the effects of macro-nutrient (nitrogen, phosphorus, and sulfur) limitations and light intensity were evaluated for the carbohydrate accumulations of Chlorella sp. AE10 under 10% CO2 conditions. It was shown that nitrogen limitation and high light intensity were effective for improving carbohydrate productivity. The average carbohydrate and biomass productivity in semi-continuous cultivation with 1/4 N medium and 1000 μmol photons m?2 s?1 was 0.673 and 0.93 g L?1 day?1, respectively. Sulfur and phosphorus limitations could improve the carbohydrate content but they could not enhance the carbohydrate productivity. The cell cycle progression and chlorophyll a were investigated using flow cytometry (FCM). The results showed that macro-nutrient limitation and high light intensity indeed influenced cell cycle progression and led to the formation of polyploid cells along with the carbohydrate accumulation in a certain range. FCM was rapid and accurate method to investigate the operation conditions why 1/4 N, 2 days as a cycle, and high light intensity were optimal ones. In addition, the remaining high level of photosynthesis activity was also important for achieving a high carbohydrate productivity. Dynamic tracking of carbohydrate accumulation is helpful for establishment of a semi-continuous cultivation for enhancing carbohydrate productivity in microalgae.  相似文献   

14.
A rotating disk bioreactor with plastic composite support (PCS) as the solid support was evaluated for bacterial cellulose (BCel) production. Results demonstrated that BCel can be produced in a semi-continuous manner. The BCel productivity reached around 0.24 g/L/day and can be sustained for at least five consecutive runs. Scanning electron microscopy results confirmed that Gluconacetobacter can attach on the PCS surface, which eliminates the need of reinoculation. X-ray diffraction patterns and mechanical analysis of BCel produced from this semi-continuous process exhibited lower crystallinity (66.9 %) and mechanical property (Young's modulus of 372.5 MPa) when compared with the BCel obtained from static culture (crystallinity = 88.7 %, Young's modulus of 3,955.6 MPa). Both BCel samples possessed similar water content (98.66 vs. 99.04 %) and thermostability (around 346 °C). In conclusion, the PCS rotating disk bioreactor system can be used to produce BCel in pellicle form with enhanced productivity and, meanwhile, can be scaled up easily to meet commercial need.  相似文献   

15.
The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day?1), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO2–air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH4 and P-PO4 removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.  相似文献   

16.
Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K2HPO4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.  相似文献   

17.
Aerial algae are considered to be highly tolerant of and adaptable to severe conditions including radiation, desiccation, high temperatures, and nutrient deficiency, compared with those from aquatic habitats. There are considerable variations in the fatty acid (FA) composition of aerial microalgae from dry environments. A new species with a high lipid level was found on concrete surfaces and was identified as Coccomyxa sp. KGU-D001 (Trebouxiophyceae). This study characterized its FA content and profile in a bath culture. The alga showed a constant specific growth rate (0.26 day?1) ranging in light intensity from 20 to 80 μmol photons m?2 s?1. The algal cells started to form oil bodies in the early stationary phase of growth, and oil bodies occupied most of the cells during the late stationary phase when the cells accumulated 27 % total fatty acids (TFA). The process of lipid body formation accumulating large amounts of triacylglycerols (TAG) appeared to be very unusual in response to stress conditions persisting for a relatively long culture time (50 days). This study could indicate that aerial microalgae will be a candidate for biodiesel production when a new cultivation method is developed using extreme stresses such as nutritional deficiency and/or desiccation.  相似文献   

18.
In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.  相似文献   

19.
Microbial Lipid Production from Corn Stover via Mortierella isabellina   总被引:1,自引:0,他引:1  
Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.  相似文献   

20.
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号