首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of two- and three-dimensional nonlinear buoyant flows in horizontal mushy layers during the solidification of binary alloys. We study the nonlinear evolution of such flow based on a recently developed realistic model for the mushy layer with permeable interface. The evolution approach is based on a Landau type equation for the amplitude of the secondary nonlinear solution, which can be in the form of rolls, squares, rectangles or hexagons. Using both analytical and computational methods, we calculate the solutions to the evolution equation near the onset of motion for both subcritical and supercritical regimes and determine the stable solutions. We find, in particular, that for several investigated cases with different parameter regimes, secondary solution in the form of subcritical down-hexagons or supercritical up-hexagons can be stable. However, the preferred solution for smallest values of the Rayleigh number and the amplitude of motion is in the form of subcritical down-hexagons. This result appears to agree with the experimental observation on the form of the convective flow near the onset of motion.  相似文献   

2.
We consider the problem of steady convective flow during the directional solidification of a horizontal ternary alloy system rotating at a constant and low rate about a vertical axis. Under the limit of large far-field temperature, the flow region is modeled to be composed of two horizontal mushy layers, which are referred to here as a primary layer over a secondary layer. We first determine the basic state solution and then carry out linear stability analysis to calculate the neutral stability boundary and the critical conditions at the onset of motion. We find, in particular, that there are two flow solutions and each solution exhibits two neutral stability boundaries, and the flow can be multi-modal in the low rotating rate case with local minima on each neutral boundary. The critical Rayleigh number and the wave number as well as the vertical volume flux increase with the rotation rate, but the flow is found to be less stabilizing as compared to the binary alloy counterpart flow. The effects of low rotation rate increase the solid fraction and the liquid fraction at certain vertically oriented fluid lines, and the highest value of such increase is at a horizontal level close to the interface between the two mushy layers.  相似文献   

3.
We consider the problem of nonlinear buoyant flow in a horizontal mushy layer during alloy solidification. We study the nonlinear evolution of such flow based on a recently developed realistic model for the mushy layer. The evolution approach is based on a Landau type equation for the amplitude of the secondary nonlinear solution, which is derived in this article. Using both analytical and computational methods, we calculate the solution to the evolution equation for both subcritical and supercritical regimes. We find, in particular, that for a passive mush, where the permeability is constant, and supercritical regime, the primary solution is linearly unstable to the secondary solution which becomes a steady stable solution for sufficiently large time, while the secondary solution decays to zero for the subcritical regime. On the other hand, for a realistic reactive mush, where the permeability is variable, the secondary flow can break down in a finite time for either supercritical or subcritical regime, which indicates existence of some kind of bursting behavior. These results are then compared to the corresponding ones based on the weakly nonlinear theory.  相似文献   

4.
This paper studies the flow pattern of non-linear magneto convection that can be realized in a horizontal mushy layer and in the presence of joule heating, which is the amount of heat produced by the induced magnetic field. We consider the appropriate system of equations and the associated boundary conditions for the flow in the mushy layer subjected to a vertical magnetic field of uniform strength. Under certain assumptions and conditions, we determine the stable finite-amplitude solutions of the resulting system using a perturbation approach and stability analysis. We find, in particular, that for a wide range of values of the joule heating parameter and sufficiently small amplitude of the flow, the only stable convective flow is in the form of subcritical down-hexagons with down-flow at the cells' centers and up-flow at the cells' boundaries. This result is in sharp contrast to the case in the absence of joule heating where instead the subcritical up-hexagons with up-flow at the cells' centers and down-flow at the cells' boundaries can be stable. In the presence of joule heating the stable subcritical down-hexagons were found to be enhanced with increasing the strength of the externally imposed magnetic field.  相似文献   

5.
This present study considers the problem of steady magneto-convection in a horizontal mushy layer with variable permeability and an impermeable mush–liquid interface during directional solidification of binary alloys. We model the flow by introducing a uniform magnetic field in the mushy layer which is considered as a porous medium where Darcy’s law holds and the permeability is a function of the local solid volume fraction. Basic-state solutions are obtained analytically using the no-flow condition. With the help of multiple shooting techniques, we obtain numerical solutions to the linear perturbation system for non-magnetic and magnetic cases. Numerical results are presented showing the effects of the magnetic field and the permeability of the layer. These results demonstrate that the application of an external magnetic field has stabilizing effects on the convection and can reduce the tendency for chimney formation in the mushy layer. In addition, variable permeability, which corresponds to an active mushy layer, indicates more stable and realizable flow system as compared to the case of constant permeability.  相似文献   

6.
Horizontal-shear thin-layer homogeneous fluid flow in the open channel is considered. A one-dimensional mathematical model of the development and evolution of the horizontal mixing layer is derived within the framework of the three-layer scheme. The steady-state solutions of the equations of motion are constructed and investigated. In particular, supercritical (subcritical)-in-average flow concepts are introduced and the problem of the mixing layer structure is solved. The proposed model is verified on the basis of comparison with a numerical solution of two-dimensional equations of shallow water theory.  相似文献   

7.
Large-eddy simulations are conducted for a rotating golf ball and a rotating smooth sphere at a constant rotational speed at the subcritical, critical and supercritical Reynolds numbers. A negative lift force is generated in the critical regime for both models, whereas positive lift forces are generated in the subcritical and supercritical regimes. Detailed analysis on the flow separations on different sides of the models reveals the mechanism of the negative Magnus effect. Further investigation of the unsteady aerodynamics reveals the effect of rotating motion on the development of lateral forces and wake flow structures. It is found that the rotating motion helps to stabilize the resultant lateral forces for both models especially in the supercritical regime.  相似文献   

8.
In this article, an investigation is conducted to analyze the marginal stability with and without magnetic field in a mushy layer. During alloy solidification, such mushy layer, which is adjacent to the solidification front and composed of solid dendrites and liquid, is known to produce vertical chimneys. Here, we carry out numerical investigation for particular range of parameter values, which cover those of available experimental studies, to determine the convective flow at the onset of motion. The governing coupled non-linear partial differential equations are non-dimensionalised and solved to get the steady basic-state solution. The thickness of the mushy layer is determined as a part of the solution. Using multiple shooting technique, we determine the steady-state solutions in a range of critical Rayleigh number. We analyse the effect of several parameters, Chandrasekhar number Q, and Robert’s number τ on the problem. It was found that an increase in Q has a stabilizing effect on solidification and the critical Rayleigh number increases on increasing Q. It was also found that for moderate or small values of Robert’s number τ the critical Rayleigh number is mostly insensitive.  相似文献   

9.
The effects of rotation on a mushy layer, during the solidification of binary alloys, is considered. A near-eutectic approximation and large far-field temperature are employed in order to decouple the mushy layer from the overlying liquid melt. The current study employs a new moderate time scale for mushy layers exhibiting Stefan numbers of unit order of magnitude. The weak non-linear theory is used to evaluate the leading order amplitude. The results of the weak non-linear theory are then used to establish the nature of the bifurcation, that is whether the bifurcation is forward or inverse.  相似文献   

10.
The stability of a conducting viscous film flowing down an inclined plane at moderate Reynolds number in the presence of electromagnetic field is investigated under induction-free approximation. Using momentum integral method a non-linear evolution equation for the development of the free surface is derived. The linear stability analysis of the evolution equation shows that the magnetic field stabilizes the flow whereas the electric field stabilizes or destabilizes the flow depending on its orientation with the flow. The weakly non-linear study reveals that both the supercritical stability and subcritical instability are possible for this type of thin film flow. The influence of magnetic field on the different zones is very significant, while the impact of electric field is very feeble in comparison.  相似文献   

11.
This paper studies the problem of non-linear thermal convection in a horizontal layer of a low Prandtl number fluid with nearly insulating boundaries and in the presence of horizontally uniform internal heat sources. Two-dimensional rolls and hexagonal cells are found to be the only possible stable convection cells. Subcritical instability associated with the hexagons can occur for a range of the amplitude of convection. It is found that non-uniform internal heating can affect various flow features and the stability of the convective motion. A new subcritical instability which exists even in a symmetric layer with arbitrary Prandtl number is also found for the case where the variations of the internal heating with respect to the vertical variable is sufficiently high.  相似文献   

12.
An analysis is made of convective heat transport, produced by uniform heating from below, in a horizontal layer of a porous medium consisting of vertical slabs or columns of different permeabilities. Estimates of the heat flux are made on the assumption that flow in one column does not interact with flow in adjacent columns. The results are compared with those for a homogeneous layer, for which previous work is reviewed. It is found that an inhomogeneous layer transports less heat than a homogeneous layer for which the mean Rayleigh number is the same, if the Rayleigh number is supercritical throughout the layer. If the Rayleigh number is subcritical in part of the layer, the inhomogeneous layer may transport more heat than the equivalent homogeneous layer.  相似文献   

13.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

14.
The flow over a smooth sphere is examined in the Reynolds number range of 5.0 × 104 < Re < 5.0 × 105 via measurements of the fluctuating forces and particle image velocimetry measurements in a planar cut of the velocity field. Comprehensive studies of the statistics and spectra of the forces are presented for a range of subcritical and supercritical Reynolds numbers. While the subcritical lateral force spectra are dominated by activity corresponding to the large-scale vortex shedding frequency at a Strouhal number of approximately 0.18, there is no such peak apparent in the supercritical spectra, although resolution effects may become important in this region. Nor does the large-scale vortex shedding appear to have a significant effect on the drag force fluctuations at either sub- or super-critical Reynolds numbers. A simple double spring model is shown to capture the main features of the lateral force spectra. The low-frequency force fluctuations observed in earlier computational studies are shown to have important implications for statistical convergence, and in particular, the apparent mean side force observed in earlier studies. At least one thousand dimensionless time units are required for reasonable estimates of the second and higher moments below the critical Reynolds number and even more for supercritical flow, stringent conditions for computational studies. Lastly, investigation of the relationship between the motion of the instantaneous wake shape, defined via the local position where the streamwise velocity is equal to half the freestream value, and the in-plane lateral force for subcritical flow reveals a significant negative correlation throughout the near wake, which is shown to be related to a structure inferred to arise from the large-scale vortex shedding convecting downstream at 61% of the freestream velocity. In addition to its utility in understanding basic sphere flow, the apparatus is also a testbed that will be used in future studies, examining the effect of both static and dynamic changes to the surface morphology.  相似文献   

15.
We study the solidification and flow of a binary alloy over a horizontally moving substrate. A situation in which the solid, liquid and mushy regions are separated by the stationary two-dimensional interfaces is considered. The self-similar solutions of the governing boundary layer equations are obtained, and their parametric dependence is analysed asymptotically. The effect of the boundary layer flow on the physical characteristics is determined. It is found that the horizontal pulling and the resulting flow in the liquid enhance the formation of the mushy region.  相似文献   

16.
Peng Li  Yiren Yang  Li Lu 《Meccanica》2014,49(12):2797-2815
This paper is aimed at presenting the nonlinear flutter peculiarities of a cantilevered plate with motion-limiting constraints in subsonic flow. A non-smooth free-play structural nonlinearity is considered to model the motion constraints. The governing nonlinear partial differential equation is discretized in space and time domains by using the Galerkin method. The equilibrium points and their stabilities are presented based on qualitative analysis and numerical studies. The system loses its stability by flutter and undergoes the limit cycle oscillations (LCOs) due to the nonlinearity. A heuristic analysis scheme based on the equivalent linearization method is applied to theoretical analysis of the LCOs. The Hopf and two-multiple semi-stable limit cycle bifurcation bifurcations are supercritical or subcritical, which is dependent on the location of the motion constraints. For some special cases the bifurcations are, interestingly, both supercritical and subcritical. The influence of varying parameters on the dynamics is discussed in detail. The results predicted by the analysis scheme are in good agreement with the numerical ones.  相似文献   

17.
We consider the problem of mixed oscillatory and steady modes of nonlinear compositional convection in horizontal mushy layers during the solidification of binary alloys. Under a near-eutectic approximation and the limit of large far-field temperature, we determine a number of two- and three-dimensional weakly nonlinear mixed solutions, and the stability of these solutions with respect to arbitrary three-dimensional disturbances is then investigated. The present investigation is an extension of the problem of mixed oscillatory and steady modes of convection, which was investigated by Riahi (J Fluid Mech 517: 71–101, 2004), where some calculated results were inaccurate due to the presence of a singular point in the equation for the linear frequency. Here we resolve the problem and find some significant new results. In particular, over a wide range of the parameter values, we find that the properties of the preferred and stable solution in the form of particular subcritical mixed standing and steady hexagons appeared to be now in much better agreement with the available experimental results (Tai et al., Nature 359:406–408, 1992) than the one reported in Riahi (J Fluid Mech 517:71–101, 2004). We also determined a number of new types of preferred supercritical solutions, which can be preferred over particular values of the parameters and at relatively higher values of the amplitude of convection.  相似文献   

18.
Circular cylindrical shells conveying incompressible flow are addressed in this study; they lose stability by divergence when the flow velocity reaches a critical value. The divergence is strongly subcritical, becoming supercritical for larger amplitudes. Therefore the shell, if perturbed from the initial configuration, has severe deformations causing failure much before the critical velocity predicted by the linear threshold. Both Donnell's non-linear theory retaining in-plane displacements and the Sanders-Koiter non-linear theory are used for the shell. The fluid is modelled by potential flow theory but the effect of steady viscous forces is taken into account. Geometric imperfections are introduced and fully studied. Non-classical boundary conditions are used to simulate the conditions of experimental tests in a water tunnel. Comparison of numerical and experimental results is performed.  相似文献   

19.
The problem of fluid motion in a cavity with rigid sidewalls that is heated uniformly from below is studied by the finite-element method. The techniques of parameter-stepping and monitoring the determinant of the Jacobian matrix to find bifurcations are used. Results are presented for width-to-height ratios in the range 1 to 4, and for three different boundary conditions on the horizontal surfaces, namely both rigid, both free, and rigid bottom with free top. The non-linear branches above the critical Rayleigh number are examined. Extensions to non-Boussinesq flow are trivial.  相似文献   

20.
An experimental investigation was made of the flow over a grooved circular cylinder of different aspect ratios. Based on the drag coefficient, Strouhal number and mean shear stress, three flow regimes of subcritical, critical and supercritical were found, all of which are below the subcritical Reynolds number of a smooth cylinder. Boundary layer characteristics within the different flow regimes were measured. The shift of the boundary layer away from the grooves and an estimated change in the virtual origin are used to establish the similarity of the flow characteristics of grooved and smooth cylinders.Now at Development and Planning Division, Hong Kong Electric Co. Ltd., Hong Kong  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号