首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperfine fields at Fe and Mo layers in polyimide/Fe(10 nm)/[Mo(1.1 nm)/Fe(2.0 nm)]120 and [Mo(1.3 nm) /Fe(2.0 nm)]120 multilayers prepared by the electron-beam evaporation technique were measured at room-temperature by Mössbauer spectroscopy and perturbed-angular-correlation spectroscopy. The hyperfine fields in the Fe layers do not show a clear dependence on the Mo layer thickness. On the other hand, the hyperfine fields in the Mo layers show different magnetic structures in these samples. The difference suggests a variation of electron spin polarization in the Mo layers.  相似文献   

2.
We present a comparative study of B4C/Mo and B4C/Mo2C periodic multilayer structures deposited by magnetron sputtering. The characterization was performed by grazing incidence X-ray reflectometry at two different energies and high resolution transmission electron microscopy. The experimental results indicate the existence of an interdiffusion layer at the B4C-on-Mo interface in the B4C/Mo system. Thus, the B4C/Mo multilayers were modeled by an asymmetric structure with three layers in each period. The thickness of B4C-on-Mo interfacial layer was estimated about 1.1 nm. The B4C/Mo2C multilayers present less interdiffusion and are well modeled by a symmetric structure without interfacial layers. This study shows that B4C/Mo2C structure is an interesting alternative to B4C/Mo multilayer for X-ray optic applications.  相似文献   

3.
Two different Fe/MnF2 samples have been prepared by e-beam evaporation on MgO(001) substrates. The Fe layer in the samples includes a 10 Å thick 57Fe probe layer either at the Fe/MnF2 interface (interface sample) or 35 Å away from the interface (center sample). The samples are characterized by X-ray diffraction, conversion electron Mössbauer spectroscopy (CEMS) and SQUID magnetometry. 57Fe CEMS has been employed to study the depth dependent hyperfine interactions in Fe/MnF2 as a function of temperature between 18 K to 300 K. The hyperfine field B hf has been obtained for the interfacial and off-interfacial 57Fe layers. At the interface, besides B hf of bcc-Fe, the presence of a component with a distribution P(B hf ) is observed. The latter is assigned to interfacial 57Fe atoms, indicating some (~15%, equivalent to ~1 Fe atomic layer) intermixing at the Fe/MnF2 interface and a decrease of the average hf > by 21%. The influence of the interface disappears as the 57Fe probe layer is placed away from the interface. The temperature dependence of the average hf > of the interface has been measured. The Fe spins, at remanence, are found to lie in the film plane.  相似文献   

4.
NANOPERM-type alloy with chemical composition Fe76Mo8CuB15 was studied by combination of 57Fe Mössbauer spectroscopy and 57Fe(10B, 11B) nuclear magnetic resonance in order to determine distribution of hyperfine magnetic fields and evolution of relative concentration of Fe-containing crystalline phases within the surface layer and the volume of the nanocrystallized ribbons with annealing temperature. Differential scanning calorimetry revealed two crystallization stages at Tx1 ~ 510 °C and Tx2 ~ 640 °C, connected to precipitation of α-Fe and Fe(Mo,B) nanocrystals, respectively. The amorphous and partially crystalline state was obtained by annealing at several temperatures in the range 510-650 °C. The combination of conversion electron (CEMS) and transmission Mössbauer spectrometry (TMS) showed that annealing induces crystallization starting from both surfaces of the ribbons. For the as-quenched sample, scanning electron microscopy (SEM) and CEMS revealed significant differences in the “air” and “wheel” sides of the ribbons, crystallites were preferentially formed at the latter. While SEM micrographs of annealed samples showed various mean diameters of the crystals at opposite sides of the ribbons, the amounts of crystalline volume derived from the CEMS spectra approximately equaled. Mössbauer spectra of annealed samples contained narrow sextet ascribed to crystalline α-Fe phase, three sextets with distribution of hyperfine field assigned to the interface regions of the nanocrystals and the contribution of the amorphous phases. In-field TMS performed at 4.2 K with magnetic moments aligned by external magnetic field enabled to properly determine in particular the contribution of the amorphous phases in the samples. Resulting distributions of the hyperfine fields were compared with 57Fe(10B, 11B) nuclear magnetic resonance (NMR) spectra.  相似文献   

5.
The fine and hyperfine structure of two dinuclear sulfide bridged Fe?Mo complex anions and their W homologues have been studied by magnetic susceptibility and Mössbauer measurements. It is shown that, by following a stepwise methodology, it is possible to derive from the low temperature magnetization data the value and sign of the fine structure parametersD andE/D. These parameters are further confirmed by an independent analysis of the Mössbauer data. Magnetic and electric hyperfine interaction parameters are also determined from the Mössbauer results. Both fine and hyperfine parameters point to a valence scheme, for all complexes, of FeII?MoVI(WVI) with a varying degree of charge delocalization from the iron to the molybdenum (tungsten) site. The parameterD is negative with an orientation of itsz axis close to theV zz axis.  相似文献   

6.
57Fe conversion electron Mössbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe–P and Ni–Fe coatings. XRD and 57Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe–P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe–P deposits pulse plated at medium long deposition time (t on?=?2 ms), with short relaxation time (t off?=?9 ms) and low current density (I p?=?0.05 Acm?2) or at short deposition time (t on?=?1 ms) with long relaxation time (t off?=?250 ms) and high current density (I p?=?1.0 Acm?2). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni–Fe alloy with a very fine, 5–8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni–Fe and Fe–P pulse plated thin layers.  相似文献   

7.
57Fe and 237Np Mössbauer ōmeasurements have been performed for NpFeGa5, which is one of the so-called neptunium 1-1-5 compounds. The 57Fe Mössbauer spectra below T N = 118 K show the magnetically ordered state. The magnitude of the hyperfine magnetic field at the 57Fe nucleus is determined to be 1.98 ± 0.05 T at 10 K. From the 237Np Mössbauer spectrum at 10 K, the hyperfine magnetic field at the 237Np nucleus is 203 T and the hyperfine coupling constant is determined to be 237 T/μB using the Np atomic magnetic moment of 0.86 μB determined by the neutron diffraction study.  相似文献   

8.
The (3He,α) reaction on96Mo and100Mo targets has been studied at a bombarding energy of 18 MeV. Thel n transfer assignments have been made on the basis of angular distribution patterns and on an analysis of the ratios of the experimental and theoretical cross-sections of (3He,α) and (d, t) reactions data leading to the same final states. New states are observed in95Mo at 3373 keV (9/2+); spin and parity assignments are made to levels in99Mo at 1621 keV 7/2+ (9/2+), 1778 keV (5/2?) and 2078 keV (11/2?).  相似文献   

9.
Polycrystalline double perovskites Sr2Fe1?x Cr x Mo1?x W x O6 with x = 0, 0.05, 0.10, 0.15, 0.20, and 0.30 have been prepared by sold state reactions. A continuous decrease of the tetragonal unit cell parameters α and c with increasing x values is observed. The highest Curie temperature T C = 426 K is recorded for the x = 0.10 compound. 57Fe Mössbauer spectroscopy measurements indicate a non-integral electronic configuration of ~3d5.3 for the Fe ions at the ordered double perovskite structure for x ≤ 0.20, which reaches ~3d5.4 for x = 0.30. Fe–Mo/W anti-site and anti-phase boundary defects are observed in all samples in equal concentrations of around 3% of the total number of Fe ions in their structure.  相似文献   

10.
Magnetic polarization of Mo atoms in Co96Mo4 alloy film and Co/Mo multilayered structures has been studied by X‐ray magnetic circular dichroism. Samples with Mo spacers of two different thicknesses (0.9 nm and 1.8 nm) were investigated. Mo atoms receive a magnetic moment of ?0.21μB in the alloy. In the multilayer with the thinner Mo spacer (dMo = 0.9 nm) the magnetic moment is much smaller (?0.03μB). In both cases the measured induced moment at the Mo site is oriented antiparallel to the moment at the Co atoms. The presence of the induced moment in the Mo spacer coincides with antiferromagnetic coupling between the Co component slabs. In contrast, neither measurable induced moment at the Mo site nor interlayer coupling between the Co layers has been found for the multilayer with the thicker Mo spacer. Possible mechanisms of the coupling associated with the induced moment are discussed in detail.  相似文献   

11.
57Fe (1%) doped SrCoO3 obtained by high-pressure method, has been investigated by magnetization and Mössbauer spectroscopy studies (MS) in the temperature range 4.2 K to 300 K. The ferromagnetic ordering temperature T C obtained is 272(2) K. Isothermal magnetization curves have been measured at various temperatures, from which the saturation moments (M sat) have been deduced. The 57Fe MS spectra display standard six-line patterns with an isomer shift typical of Fe3?+? and a very small quadrupole splitting (QS = 0.14(1) mm/s above T C). The magnetic hyperfine field at 4.2 K is 276(1) kOe. The temperature dependencies of the iron hyperfine field and M sat (1.83 µ B at 5 K) are almost identical. This shows that the Fe3?+? is replacing Co4?+?, both of the same electronic configuration. They also interact similarly, namely the Fe–Co exchange is almost identical to the Co–Co exchange.  相似文献   

12.
The half-lives of the 469-keV level in99Nb and the 236-keV state in99Mo have been determined to (0.21±0.06) ns and (0.87±0.15) ns, respectively, fromβ,γ-delayed coincidences. Values ofB(E2)=(89±28)e 2 fm4 andB(M1)=(0.017±0.003) μ n 2 are deduced for the 469-keV transition in99Nb and the 138-keV transition in99Mo. The result for theE2-transition probability seems to be in accordance with the particle-core coupling interpretation of the low-lying levels in98Nb if98Zr is used as the core. TheM1 probability for99Mo agrees with the systematics for “l-forbidden” 1g7/2→2d 5/2 neutron transitions.  相似文献   

13.
The hyperfine structure of the ground state 4d 5 5s 7 S 3 of95Mo and97Mo has been measured by the atomic beam magnetic resonance technique with the following results:95Mo:A=?208.582060(10)MHz,B=37.050 (100) kHzC=?30 (10) Hz,D=?3 (3) Hz97Mo:A=? 212.980930 (10) MHz,B?69.990(140)kHzC=?5 (10) Hz,D=0 (3) Hz. After application of corrections calculated according to second order perturbation theory, the hyperfine structure constants became:95Mo: Ac=?208.582560(290)MHz,B c =16.920(4300)kHzC c=?30(270) Hz,D c =? 3 (50) Hz97Mo: Ac=212.981450(300) MHz,B c =?90.780(4400)kHzC c=?6(270) Hz,D c =0 (50) Hz. With the known ratio ofg I(95Mo)/g I(97Mo) [1] a calculation of the hyperfine anomaly yields:95 Δ 97=?0.01009(17)%. The ratio of the uncorrectedB factors isB(97Mo)/B(95Mo)=?1.8890(47). Because of the relatively large effects of second order hyperfine structure, the ratio of the correctedBfactors differs considerably from the ratio of the uncorrectedB factors. From the correctedB factors the electric quadrupole moments may be evaluated by means of calculated radial integrals [2]. The results are:Q (95Mo)=?0.019(12)barns,Q(97Mo)=0.102(39)barns.  相似文献   

14.
Gian A. Rizzi 《Surface science》2006,600(16):3345-3351
Stoichiometric and highly-defective TiO2(1 1 0) surfaces (called as yellow and blue, respectively) were exposed to Mo(CO)6 vapours in UHV and in a reactive O2 atmosphere. In the case of yellow-TiO2, an O2 reactive atmosphere was necessary to obtain the Mo(CO)6 decomposition at 450 °C with deposition of MoOx nanostructures where, according to core level photoemission data, the Mo+4 state is predominant. In the case of blue-TiO2 it was possible to obtain Mo deposition both in UHV and in an O2 atmosphere. A high dose of Mo(CO)6 in UHV on blue-TiO2 allowed the deposition of a thick metallic Mo layer. An air treatment of this sample at 580 °C led to the elimination of Mo as MoO3 and to the formation of a transformed layer of stoichiometry of Ti(1−x)MoxO2 (where x is close to 0.1) which, according to photoelectron diffraction data, can be described as a substitutional near-surface alloy, where Mo+4 ions are embedded into the titania lattice. This embedding procedure results in a stabilization of the Mo+4 ions, which are capable to survive to air exposure for a rather long period of time. After exposure of the blue-TiO2(1 1 0) substrate to Mo(CO)6 vapours at 450 °C in an O2 atmosphere it was possible to obtain a MoO2 epitaxial ultrathin layer, whose photoelectron diffraction data demonstrate that is pseudomorphic to the substrate.  相似文献   

15.
用高分辨电子显微学方法研究了Ni80Fe20/Mo磁性多层膜,结果表明:(1)多层膜的结晶状态,随Mo非磁性层厚度而变化.当Mo层厚度为0.7nm时,多层膜基本为非晶;当Mo层厚度大于1.6nm时,Mo层和NiFe层内分别结晶为体心立方和面心立方多晶,层内晶粒尺寸为2—6nm.(2)在Mo层厚度为1.6和2.1nm的多层膜中,NiFe层和Mo层之间存在两种取向关系:(110)Mo∥(111)NiFe,[111]关键词:  相似文献   

16.
《Solid State Communications》1987,64(7):1025-1028
We present results from x-ray powder diffraction and lithium intercalation cells on samples of nominal composition “Cu2Mo6S6O2” and “Mo6S6O2”. Our results show that it is not possible to prepare these materials with any significant fraction of the sulfur substituted by oxygen as claimed by Umarji et al.1 Instead, the high temperature (1250°C) products from starting materials of CuO, Cu, S, MoO2 and/or Mo are MoO2, Mo and CuyMo6S8 with y>2.  相似文献   

17.
The spin-Hamiltonian parameters (g factors g i and hyperfine structure constants A i , where i = x, y, z) of the rhombic Mo5+ center in Ca1?x Y x MoO4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model for the rhombic d1 tetrahedral clusters with the ground state |d z 2〉. In these formulas, besides the contributions due to the widely applied crystal-field (CF) mechanism concerning CF excited states, those due to the charge-transfer (CT) mechanism (which is omitted in CF theory) concerning CT excited states are considered. The calculated results are in reasonable agreement with the experimental values. The calculations show that because of the great relative importance of CT mechanism for the components of spin-Hamiltonian parameter along x and y axes, the accurate and complete calculations of spin-Hamiltonian parameters for Mo5+ and other high valence state dn ions in crystals should take account of both the CF and CT mechanisms. The defect model of the rhombic Mo5+ center is also confirmed from the calculations.  相似文献   

18.
The influence of recovery annealing in a CO2 atmosphere at 700°C on the properties of Li2Zn2(MoO4)3 crystals doped with cerium and copper ions has been studied. The EPR investigation of Li2Zn2(MoO4)3 crystals annealed in a CO2 atmosphere has revealed that the annealing leads to the formation of oxygen vacancies in positions adjacent to the oxygen octahedron of lithium, M3, and the oxygen tetrahedron of molybdenum, Mo1. In this case, the charge state of molybdenum becomes Mo5+ and appears in the EPR spectra in the form of one magnetically nonequivalent position. The analysis of the angular dependence of the EPR spectrum of Mo5+ made it possible to calculate the spectral parameters g = 1.862, g = 1.933, A = 71.8 G, and A = 34.1 G. The cross relaxation on the hyperfine structure from the molybdenum isotope 97Mo is found in the EPR spectra. The photoexcitation of Li2Zn2(MoO4)3 crystal doped with cerium ions leads to the saturation of the EPR spectrum of Mo5+ and to the formation of the hyperfine structure from one lithium ion with a hyperfine structure constant of 14 G. For Li2Zn2(MoO4)3 crystals doped with copper ions, a very weak EPR spectrum of Mo5+ is observed in the initial crystals. As a result of the photoexcitation, an increase in the intensity of this spectrum by an order of magnitude and manifestation of the EPR spectrum of Cu2+ ions take place. It is assumed that such a behavior of the EPR spectra of molybdenum ions in Li2Zn2(MoO4)3 crystals doped with cerium and copper ions under photoexcitation is caused by different positions of the energy levels of cerium and copper ions with respect to the energy level of the molybdenum ion.  相似文献   

19.
The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 (t AF = 12, 18, 24 nm)/Co20Fe60B20(t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10–15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.  相似文献   

20.
The magnetic hyperfine field at99Tc impurities in Fe has been measured to be ¦H hf¦=325 (7) kGauss at 298 °K. The technique of time-differential perturbed angular correlations on the 181 keV state of99Tc was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号