首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Simultaneous quantum correlations between two spins in magnetic nanostructures are considered in the model of a linear chain of a finite number of atoms with exchange interaction between electron spins of neighboring atoms in the framework of the Heisenberg ferromagnetism theory. We assume that in the initial state, the spins of all chain atoms except the first two are oriented along the same direction. The spins of the first two atoms are flipped. Due to the exchange interaction, this initial state generates a spin flip wave along the chain. The expressions obtained for nonstationary quantum amplitudes of the flip probability waves for an even number of spins can be used for calculating quantum correlations between two spins separated by a large distance in a chain. Numerical calculations of the spin correlator reveal that the correlation between two spins in the chain occurs with a delay on the order of the time of propagation of the exchange interaction along the spin chain. After the delay, the spin correlation amplitude abruptly increases followed by subsequent oscillatory temporal behavior.  相似文献   

2.
《Physics letters. A》2005,336(1):66-70
Current-induced spin transfer torque through a marginal Fermi liquid (MFL) which is connected to two noncollinearly aligned ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function method. It is found that in the absence of the spin–flip scattering, the magnitude of the torque increases with the polarization and the coupling constant λ of the MFL, whose maximum increases with λ linearly, showing that the interactions between electrons tend to enhance the spin torque. When the spin–flip scattering is included, an additional spin torque is induced. It is found that the spin–flip scattering enhances the spin torque and gives rise to a nonlinear angular shift.  相似文献   

3.
The promotion of collinear classical spin configurations as well as the enhanced tendencytowards nearest-neighbor clustering of the quantum spins are typical features of thefrustrating isotropic three-body exchange interactions in Heisenberg spin systems. Basedon numerical density-matrix renormalization group calculations, we demonstrate that theseextra interactions in the Heisenberg chain constructed from alternating S = 3/2 and σ = 1/2 site spins can generate numerous specific quantum spinstates, including some partially-polarized ferrimagnetic states as well as adoubly-degenerate non-magnetic gapped phase. In the non-magnetic region of the phasediagram, the model describes a crossover between the spin-1 and spin-2 Haldane-typestates.  相似文献   

4.
In this work we demonstrate that low-field chemically induced dynamic nuclear polarization (CIDNP) is strongly affected by re-distribution of polarization, which is formed in the course of spin evolution in transient radical pairs, in diamagnetic reaction products. This phenomenon is of importance when the spins of the reaction product are coupled strongly meaning that spin–spin interactions between them are comparable to the differences in their Zeeman interactions with the external magnetic field. In this case, polarization transfer relies on a coherent mechanism; as a consequence, spins can acquire significant polarization even when they have no hyperfine coupling to the electron spins in the radical pairs, i.e., cannot be polarized directly by CIDNP. This is demonstrated by taking CIDNP of n-butylamine as an example: in this case only the α-CH2 protons are polarized directly, which is confirmed by high-field CIDNP, whereas the β-CH2, γ-CH2 and δ-CH3 protons get polarized only indirectly due to the transfer of polarization from the α-CH2 protons. These results show that low-field CIDNP data should be interpreted with care to discriminate between the effects of spin evolution in transient radical pairs and in diamagnetic reaction products.  相似文献   

5.
We investigate entanglement of spin pairs in alternating open spin chains (s = 1/2) with spin-spin interactions (SSI) in the thermodynamic equilibrium state in an external magnetic field. The reduced density matrix of an arbitrarily chosen spin pair was calculated. The entanglement of a spin pair was evaluated with the Wootters criterion. The temperature at which the entangled state arises in the chosen pair was determined. Entanglement (concurrence) is shown to oscillate as a function of the position of a spin pair in the chain. The results demonstrate the dependence of the entanglement in arbitrarily chosen pairs of neighboring spins on the temperature, the position of the spin pair in the chain, chain length, and the ratio between the SSI constants. Qualitative explanation of these dependences is offered. The role of the terminal spins in the generation of entanglement is explained.  相似文献   

6.
从自旋波理论出发,通过直接求解Heisenberg模型,研究了低温下小粒子自旋体系的自发磁化规律。研究表明:极低温下自旋波被冻结;在任何温度范围内,Bloch T3/2定律都不再严格成立。同时,本文还给出了小粒子中自旋受激反转几率随位置的分布,指出低温下不存在运动明显剧烈的表面层。 关键词:  相似文献   

7.
We present measurements of the buildup and decay of nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that we polarize the nuclei in a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize nuclear spins in milliseconds whereas in the absence of the electron the nuclear spin lifetime is on the scale of seconds. This lifetime is further enhanced by 1-2 orders of magnitude by quenching the nonsecular nuclear dipole-dipole interactions with a magnetic field of 1 mT.  相似文献   

8.
We demonstrate the existence of correlated electronic states as paired spin excitations of lateral quantum dots in the integer quantum Hall regime. Starting from the spin-singlet filling-factor nu=2 droplet, by increasing the magnetic field we force the electrons to flip spins and increase the spin polarization. We identify the second spin-flip process as one accompanied by correlated, spin depolarized phases, interpreted as pairs of spin excitons. The correlated states are identified experimentally in few-electron lateral quantum dots using high source-drain voltage spectroscopy.  相似文献   

9.
This article reviews the use of single electron spins to compute. In classical computing schemes, a binary bit is represented by the bistable spin polarization of a single electron confined in a quantum dot and subjected to a weak magnetic field. The spin orientation can be either parallel or anti-parallel to the field, so that it becomes a binary variable which can encode logic 0 and logic 1. Coherent superposition of these two polarizations can represent a qubit for quantum computing. By engineering the exchange interaction between closely spaced spins in neighboring quantum dots, it is possible to implement either classical or quantum logic gates.  相似文献   

10.
Polarization phenomena involving the spins of a and b in the A(a, b)B reaction are discussed using a complete set of irreducible tensors carrying definite spin transfer. The linear model independent equations relating the cross section and the polarization observables with these tensors are shown to be particularly appropriate for the study of spin dependent interactions, preferentially associated with particular values of spin transfer. The DWBA theory of polarization transfer in deuteron stripping reactions is thoroughly discussed and among the 17 polarization observables we distinguish those likely to be more sensitive to spin dependent distortion, to have stronger deuteron D-state effects, to exhibit the sign-rule j-dependence and other forms of j-dependence. For certain deuteron polarizations, when the spin transfer is pure s = 12, it is shown that deuteron stripping reactions are transparent to vector polarization transfer and the outgoing nucléon polarization independent of scattering angle and deuteron energy. DWBA calculations including contributions from spin transfer 32 through the deuteron D-state and spin-orbit distortion show that polarization transfer in such deuteron polarizations can be explored as a method of producing fast polarized neutrons with known polarization.  相似文献   

11.
The magnetic interactions in EuO, EuS, EuSe and EuTe are usually characterized by exchange constants I1 and I2, denoting the interaction between nn and nnn Eu spins, respectively. In this paper, we propose a mechanism for the ferromagnetic interaction I1. It is an indirect exchange mediated by the spin polarization of the chalcogen p-band electrons via their exchange interactions with the magnetic ?-electrons.  相似文献   

12.
We demonstrate the suppression of nuclear-spin fluctuations in an InAs quantum dot and measure the timescales of the spin narrowing effect. By initializing for tens of milliseconds with two continuous wave diode lasers, fluctuations of the nuclear spins are suppressed via the hole-assisted dynamic nuclear polarization feedback mechanism. The fluctuation narrowed state persists in the dark (absent light illumination) for well over 1 s even in the presence of a varying electron charge and spin polarization. Enhancement of the electron spin coherence time (T2*) is directly measured using coherent dark state spectroscopy. By separating the calming of the nuclear spins in time from the spin qubit operations, this method is much simpler than the spin echo coherence recovery or dynamic decoupling schemes.  相似文献   

13.
We investigate the Temperley-Lieb-Jones algebraic structures in isomorphic higher spin chain modgls with nearest neighbour interactions and SU(2) symmetry. The Ternperley-Lieb-Jones algebraic constructions for such chains of spins from 1 to 7/2 are presented. For the case of spin-1 we also give the Temperley-Lieb-Jones algebraic representations related to the anisomorphic spin chain with q-deformed SUq(2) symmetry. Their related spin chain Harniltonians with SU(2) and SUq(2) symmetries as well as the corresponding solutions of Yang-Baxter equation are also discussed.  相似文献   

14.
Hyperfine interactions with randomly oriented nuclear spins present a fundamental decoherence mechanism for electron spin in a quantum dot, that can be suppressed by polarizing the nuclear spins. Here, we analyze an all-optical scheme that uses hyperfine interactions to implement laser cooling of quantum-dot nuclear spins. The limitation imposed on spin cooling by the dark states for collective spin relaxation can be overcome by modulating the electron wave function.  相似文献   

15.
A physics picture of spin alignments in molecule-based ferrimagnets is presented from studying the temperature dependence of the effective sublattice magnetic moments and the total reduced magnetization by means of Green’s function theory combined with the Jordan-Wigner transformation. The ferrimagnetic chain includes an S=1 biradical and an S=1/2 monoradical with antiferromagnetic alternating interactions, and the S=1 site in the chain is composed of two S=1/2 spins coupled by a finite ferromagnetic interaction. From the calculations of the sublattice magnetic moments, the magnetic moment of the S=1 biradical is negative, while that of the S=1/2 monoradical is positive, leading to a ferrimagnetic ground state. With the different kinds of the elementary excitations and the competition between the magnetic interactions and thermal fluctuations, the temperature dependence of the magnetization displays rich thermodynamic properties. Meanwhile, the external magnetic field dependence of the magnetization has a clear plateau at one third of the saturation magnetization, which can be compared with the possible experimental findings.  相似文献   

16.
Diffuse polarized neutron scattering studies have been carried out on single crystals of pyrochlore spin ice Ho2−xYxTi2O7 (x=0, 0.3, and 1) to investigate the effects of doping and anisotropy on spin correlations in the system. The crystals were aligned with the (1 −1 0) orientation coincident with the direction of neutron polarization. For all the samples studied the spin flip (SF) diffuse scattering (i.e. the in-plane component) reveals that the spin correlations can be described using a nearest-neighbour spin ice model (NNSM) at higher temperatures (T=3.6 K) and a dipolar spin ice model (DSM) as the temperature is reduced (T=30 mK). In the non-spin flip (NSF) channel (i.e. the out-of-plane component), the signature of strong antiferromagnetic correlations is observed for all the samples at the same temperature as the dipolar spin ice behaviour appears in the SF channel. Our studies show that the non-magnetic dopant Y does not significantly alter SF or NSF scattering for the spin ice state, even when Y doping is as high as 50%. In this paper, we focus on the experimental results of the highly doped spin ice HoYTi2O7 and compare our results with pure spin ice Ho2Ti2O7. The crossover from a dipolar to a nearest-neighbour spin ice behaviour and the doping insensitivity in spin ices are briefly discussed.  相似文献   

17.
We consider the one-dimensional quantum disordered Heisenberg ferromagnetic chain model with long-range correlated exchange couplings and study the nature of collective two-spin excitations. By using an exact diagonalization of the Hamiltonian in the two-spin flip subspace, we compute the spin wave participation number to characterize the localized or delocalized nature of the two-magnon states. For strongly correlated random exchange couplings, extended two-spin excitations with finite energy appear. Integrating the time-dependent Schroedinger equation, we follow the time-evolution of an initially localized two-spin state. We find that, associated with the emergence of extended spin waves, the wave-packet mean-square displacement develops a ballistic spread. Further, the single-spin wave-packet acquires an asymmetric profile due to the kinematic interaction between the excited spins.  相似文献   

18.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

19.
自旋扩散在固体核磁共振的许多现象中都起着非常重要的作用。现有几种理论方案以估算扩散系数。然而在实践中这种估算既不实际也不可靠。本文提出了确定自旋扩散速率的新方案,它利用的是CP MAS NMR中的稀核退极化规律。带质子的稀核磁化矢量在退极化中表现出两个阶段,慢衰减的第二阶段是单一指数过程,它提供了自旋扩散速率的直接度量。自旋扩散实质上是极化转移的一种宏观表现形式,这种转移通过一系列成对自旋的flip-flop进行,可以用一维随机走步模型描述。从退磁过程半对数曲线的斜率可以求得平均flip-flop时间。自旋扩散系数可以由此估算。在一些典型的刚性有机固体和结晶高分子聚合物中,求得平均flip-flop的时间是700微秒左右。它比偶极相关时间大一个数量级。这意味着,自旋扩散时间常数与自旋—自旋弛豫时间常数是很不相同的,虽然这两个相应过程虽密切相关的。由质子线宽估计自旋扩散系数是不可靠的。  相似文献   

20.
Off-resonance coherent decoupling of spin X in a heteronuclear SXN spin system can result in a multiplet with overlapping lines of spin Sand an overall shape similar to that of a doublet. Such lineshape distortions occur if certain multiple-spin coherences are present when the decoupler is switched on. The distortion could cause an apparent change in the multiplicity of an M + 1 multiplet of an SXNYM spin system when a selective decoupling of spins X is applied after a polarization transfer from spins X to spin S by INEPT or DEPT. Possibilities for suppressing the distortions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号