首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
An analytical version of the discrete-ordinates method (the ADO method) is used with recently reported analytical forms for the rigid-sphere scattering kernels to establish a concise and particularly accurate solution to the temperature-jump problem for a binary gas mixture described by the linearized Boltzmann equation. The solution yields, in addition to the temperature-jump coefficient for the general (specular-diffuse) case of Maxwell boundary conditions for each of the two species, the density, the temperature and the heat-flow profiles for both types of particles. Numerical results are reported for two binary mixtures (Ne–Ar and He–Xe) with various molar concentrations.  相似文献   

2.
An experimental study was made of the flow of the gases He, Ne, Ar, Kr, Xe, H2, D2, N2, CO2, and CH4 in the range of Knudsen numbers of 104–10?1 at room temperature in a capillary screen. A study was also made of the flow of a number of inert and diatomic gases at temperatures of 77.2 and 194.7 °K in an orifice and in a capillary screen. The relative flow rates were determined in the free-molecular mode of flow. The coefficients of accomodation of tangential momentum are calculated for the gases studied at different temperatures.  相似文献   

3.
A new model for the nonlinear Boltzmann equation for gas mixtures is constructed by the method employed in the derivation of the McCormack model in the linearized kinetic theory [F.J. McCormack, Phys. Fluids 16 (1973) 2095]. Then it is compared numerically with other existing models proposed in [P. Andries, K. Aoki, B. Perthame, J. Stat. Phys. 106 (2002) 993] and in [L.H. Holway Jr., Phys. Fluids 9 (1966) 1658] (the so-called ES-BGK model) as well as with the original Boltzmann equation. The new model is not restricted to the Maxwell molecule, can fit to general molecular models, and reproduces well solutions of the Boltzmann equation at least in the case of weak nonequilibrium. The numerical comparison is performed in the case of a binary gas mixture consisted of the hard-sphere or pseudo Maxwell molecules, after parameters concerning the molecular interaction are adjusted appropriately.  相似文献   

4.
An analytical solution (in the form of a Neumann series) of the problem of rarefied gas flow in a plane channel with infinite walls in the presence of a pressure gradient (Poiseuille flow) parallel to them is constructed within the framework of the kinetic approach in an isothermal approximation. The ellipsoidal-statistical model of the Boltzmann kinetic equation and the diffuse reflection model are used as the basic equation and the boundary condition, respectively. Using the resulting distribution function, the mass and heat flux densities in the direction of the pressure gradient per unit channel length in the y′ direction are calculated, and profiles of the gas mass velocity and heat flux in the channel are constructed. The results obtained for the continuum and free-molecular flow models are analyzed and compared with similar results obtained by numerical methods.  相似文献   

5.
This paper describes the development of a lattice Boltzmann (LB) model for a binary gas mixture, and applications to channel flow driven by a density gradient with diffusion slip occurring at the wall. LB methods for single component gases typically use a non‐physical equation of state in which the relationship between pressure and density varies according to the scaling used. This is fundamentally unsuitable for extension to multi‐component systems containing gases of differing molecular masses. Substantial variations in the species densities and pressures may exist even at low Mach numbers; hence, the usual linearized equation of state for small fluctuations is unsuitable. Also, existing methods for implementing boundary conditions do not extend easily to novel boundary conditions, such as diffusion slip. The new model developed for multi‐component gases avoids the pitfalls of some other LB models. A single computational grid is shared by all the species, and the diffusivity is independent of the viscosity. The Navier–Stokes equation for the mixture and the Stefan–Maxwell diffusion equation are both recovered by the model. Diffusion slip, the non‐zero velocity of a gas mixture at a wall parallel to a concentration gradient, is successfully modelled and validated against a simple one‐dimensional model for channel flow. To increase the accuracy of the scheme, a second‐order numerical implementation is needed. This may be achieved using a variable transformation method that does not increase the computational time. Simulations were carried out on hydrogen and water diffusion through a narrow channel for varying total pressure and concentration gradients. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A concise and accurate solution to the problem of plane Couette flow for a binary mixture of rigid-sphere gases described by the linearized Boltzmann equation and general (specular-diffuse) Maxwell boundary conditions for each of the two species of gas particles is developed. An analytical version of the discrete-ordinates method is used to establish the velocity, heat-flow, and shear-stress profiles for both types of particles, as well as the particle-flow and heat-flow rates associated with each of the two species. Accurate numerical results are given for the case of a mixture of helium and argon confined between molybdenum and tantalum plates.  相似文献   

7.
The half-space problem of evaporation and condensation of a binary mixture of vapors is investigated on the basis of the kinetic theory of gases. Assuming the Mach number of the normal component of the flow is small, a solution of the Boltzmann equation that varies slowly in the scale of the molecular mean-free-path (slowly varying solution) is introduced. Then a fluid-dynamic system that describes the behavior of the slowly varying solution is derived by a systematic asymptotic analysis. The analytical expression of the conditions allowing steady evaporation or condensation is derived from that system. We analyze the qualitative difference between the conditions in the evaporation and condensation cases: four conditions are needed in the former case while only one condition is required in the latter case. The present paper extends a earlier contribution of the first author for the BGK-type model equation [S. Takata, Half-space problem of weak evaporation and condensation of a binary mixture of vapors, in: Capitelli M. (Ed.), Rarefied Gas Dynamics, AIP, New York, 2005, pp. 503–508] to the Boltzmann equation. The extension is achieved by considering the linear stability of the far field in the case of evaporation and the H theorem, the monotonic decrease of the flux of Boltzmann's H function, in the case of condensation.  相似文献   

8.
The Couette flow of binary gaseous mixtures is studied on the basis of the McCormack model of the Boltzmann equation, which was solved numerically by the discrete velocity method. The calculations were carried out for three mixtures of noble gases: neon–argon, helium–argon, and helium–xenon. The stress tensor and bulk velocity of both species were calculated for several values of the gas rarefaction in the range from 0.01 to 40 for three values of the molar concentrations: 0.1,0.5 and 0.9. The numerical solution together with an analytical solution based on the slip boundary condition cover the whole range of the gas rarefaction. It was showed that the Couette flow is weakly affected by the intermolecular interaction law.  相似文献   

9.
The problem concerning the propagation of free waves in binary mixtures of monatomic ideal gases is analyzed by using a kinetic model of the Boltzmann equation which is compatible with the two-fluid hydrodynamic theory. Comparison of the theoretical results with available experimental data shows that the two-fluid model equation can be used to describe the wave-vector dependence of the free sound waves in both continuum and kinetic regimes.  相似文献   

10.
Polyatomic gases in strong non equilibrium vibrational state are studied in the Knudsen layer. A kinetic equation is derived from the Boltzmann equation for a stationary gas without macroscopic velocity. The simplification are basically deduced from the order of magnitude of adimmensional gradient terms. The approximate solution of this equation is deduced from a recurrent algorithm on the adimensional space variable power. Furthermore, the boundary condition allows us to obtain density and temperature jumps at the wall.  相似文献   

11.
A thermal creep process is studied in quite wide rectangular micro channels, sufficiently wide so that it is possible to consider this configuration as two parallel plates. The inlet and outlet reservoirs are maintained at the same constant pressure. A constant temperature gradient exists along the walls of the channel joining the two tanks. Thus a gas flow is induced and thermally sustained until steady conditions are reached. A complete analytical solution is derived in slip regime, yielding all the flow parameters, for Knudsen numbers smaller than 0.25. The analytical results are in good agreement with the numerical “exact” solution of the continuum equation system. Furthermore our continuum approach data are compared to those deduced from approaches based on Boltzmann equation model treatments: these various methods lead generally to a satisfactory agreement between their respective mean parameters. Nevertheless significant differences appear on the transversal velocity profiles and are further discussed.  相似文献   

12.
Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson–Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye–Hückel parameter, the wall zeta potential, and the flow behavior index. Comparison between the exact and the results based on the Debye–Hückel linearization reveals that the simplified solution leads to large errors in evaluating the velocity profile for zeta potentials higher than 25 mV, except for shear-thickening fluids in the presence of favorable pressure gradient.  相似文献   

13.
Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson–Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson–Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.  相似文献   

14.
An immersed boundary-lattice Boltzmann flux solver (IB–LBFS) for the simulation of two-dimensional fluid–structure interaction (FSI) problems is presented in this paper. The IB–LBFS applies the fractional-step method to split the overall solution process into the predictor step and the corrector step. In the predictor step, the intermediate flow field is predicted by applying the LBFS (lattice Boltzmann flux solver) without considering the presence of immersed object. The LBFS applies the finite volume method to solve N–S (Navier–Stokes) equations for the flow variables at cell centers. At each cell interface, the LBFS evaluates its viscous and inviscid fluxes simultaneously through local reconstruction of the LBE (lattice Boltzmann equation) solutions. In the corrector step, the intermediate flow field is corrected by the implicit boundary condition-enforced immersed boundary method (IBM) so that the no-slip boundary conditions can be accurately satisfied. The IB–LBFS effectively combines the advantages of the LBFS in solving the flow field and the flexibility of the IBM in dealing with boundary conditions. Consequently, the IB–LBFS presents a much simpler and more effective approach for simulating complex FSI problems on non-uniform grids. Several test cases, including flows past one and two cylinders with prescribed motions, are firstly simulated to examine the accuracy of present solver. After that, two strongly coupled fluid–structure interaction problems, i.e., particle sedimentations and vortex-induced vibrations of a circular cylinder are investigated. Good agreements between the present results and those in literature verify the capability and flexibility of IB–LBFS for simulating FSI problems.  相似文献   

15.
The results of numerical calculations of the supersonic rarefied flow through an infinite, periodic cascade of flat plates set transverse to the incident flow are presented. The flow in the vicinity of the cascade is described on the basis of the kinetic Boltzmann equation. The Knudsen numbers, based on the plate span, the distances between the plates and the scalelength of the flow under consideration, range from 0.2 to 0.003. Both steady-state regimes with a shock attached to the cascade and time-dependent ones with an upstream-traveling shock are investigated.  相似文献   

16.
An analytical version of the discrete-ordinates method (the ADO method) is used with recently established analytical expressions for the rigid-sphere scattering kernels to develop concise and particularly accurate solutions to the viscous-slip, the diffusion-slip, and the half-space thermal-creep problems for a binary gas mixture described by the linearized Boltzmann equation. In addition to a computation of the viscous-slip, the diffusion-slip, and the thermal-slip coefficients, for the case of Maxwell boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles are established for each species of particles. Numerical results are reported for two binary mixtures (Ne–Ar and He–Xe) with various molar concentrations.  相似文献   

17.
18.
The axisymmetric flows with swirl or rotation were solved by a hybrid scheme with lattice Boltzmann method for the axial and radial velocities and finite‐difference method for the azimuthal (or swirl) velocity and the temperature. An incompressible axisymmetric lattice Boltzmann D2Q9 model was proposed to solve the axial and radial velocities through inserting source terms into the two‐dimensional lattice Boltzmann equation. Present hybrid scheme was firstly validated by simulations of Taylor–Couette flows between two concentric cylinders. Then the benchmark problems of melt flow in Czochralski crystal growth were studied and accurate results were obtained. Numerical experiment demonstrated that present axisymmetric D2Q9 model is more stable than the previous axisymmetric D2Q9 model (J. Comp. Phys. 2003; 186 (1):295–307). Hence, compared with the previous model, present numerical method provides a significant advantage in simulation melt flow cases with high Reynolds number and high Grashof number. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.   相似文献   

20.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号