首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An asymptotic perturbation method is proposed to investigate stability of an axially accelerating viscoelastic beam. The material time derivative is used in the viscoelastic constitutive relation. The axial speed is characterized as a simple harmonic variation about the constant mean speed. The stability condition can be determined via the asymptotic perturbation method. The differential quadrature scheme is developed to solve numerically the equation of axially accelerating viscoelastic beams with simple supports. The stability boundaries are numerically located in the summation parametric resonance and the principal parametric resonance. Numerical examples show the effects of the beam viscoelasticity and the mean axial speed. The numerical calculations validate the analytical results in the principal parametric resonance.  相似文献   

2.
丁虎 《计算力学学报》2012,29(4):545-550
分别通过两种直接数值方法研究速度变化的经典边界条件下轴向运动黏弹性梁参数振动的稳定性。在控制方程的推导中,采用物质导数黏弹性本构关系和只对时间取偏导数的黏弹性本构关系;分别运用有限差分法和微分求积法对两种经典边界下轴向变速运动黏弹性梁的非线性控制方程求数值解,计算得到梁中点非线性参数振动的稳定稳态响应。数值结果表明,两种黏弹性本构关系对应的稳态响应存在明显差别,同时发现两种直接数值方法的仿真结果基本吻合,证明数值仿真具有较高精度。  相似文献   

3.
The dynamic stability of axially moving viscoelastic Rayleigh beams is presented. The governing equation and simple support boundary condition are derived with the extended Hamilton’s principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscosity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.  相似文献   

4.
Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same,but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.  相似文献   

5.
This study represents the transverse vibrations of an axially accelerating Euler–Bernoulli beam resting on multiple simple supports. This is one of the examples of a system experiencing Coriolis acceleration component that renders such systems gyroscopic. A small harmonic variation with a constant mean value for the axial velocity is assumed in the problem. The immovable supports introduce nonlinear terms to the equations of motion due to stretching of neutral axis. The method of multiple scales is directly applied to the equations of motion obtained for the general case. Natural frequency equations are presented for multiple support case. Principal parametric resonances and combination resonances are discussed. Solvability conditions are presented for different cases. Stability analysis is conducted for the solutions; approximate stable and unstable regions are identified. Some numerical examples are presented to show the effects of axial speed, number of supports, and their locations.  相似文献   

6.
7.
The dynamic stability of axially accelerating plates is investigated. Longitudinally varying tensions due to the acceleration and nonhomogeneous boundary conditions are highlighted. A model of the plate combined with viscoelasticity is applied. In the viscoelastic constitutive relationship, the material derivative is used to take the place of the partial time derivative. Analytical and numerical methods are used to investigate summation and principal parametric resonances, respectively. By use of linear models for the transverse behavior in the small displacement regime, the plate is confined by a viscous damping force. The generalized Hamilton principle is used to derive the governing equations, the initial conditions, and the boundary conditions of the coupled planar vibration. The solvability conditions are established by directly using the method of multiple scales. The Routh-Hurwitz criterion is used to obtain the necessary and sufficient condition of the stability. Numerical examples are given to show the effects of related parameters on the stability boundaries. The validity of longitudinally varying tensions and nonhomogeneous boundary conditions is highlighted by comparing the results of the method of multiple scales with those of a differential quadrature scheme.  相似文献   

8.
DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED   总被引:2,自引:0,他引:2  
IntroductionThe class of systems with axially moving materials involves power transmission chains,band saw blades and paper sheets during processing. Vibration of such systems is generallyundesirable. The traveling tensioned Euler-Bernoulli beam is the pr…  相似文献   

9.
运用近似解析方法和数值方法研究轴向变速运动黏弹性Rayleigh梁的次谐波共振和组合共振的稳定性区域。基于变分原理,考虑梁断面旋转惯性的影响,推导轴向速度有周期波动的微变形梁横向振动的数学模型;采用多尺度方法建立前两阶次谐波共振和组合共振范围内的参数振动的可解性条件;进而确定梁两端简支边界条件下,因共振而产生的失稳区域;通过微分求积方法求解表征细长Rayleigh梁横向振动的运动微分方程。数值算例分析了黏弹性系数和扭转系数对梁振动失稳区域的影响,将数值仿真结果与近似解析方法的结论进行比较。算例表明:近似解析解的精度较高,第一、第二阶主共振的最大误差分别为3.206%、4.213%。  相似文献   

10.
Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.  相似文献   

11.
This paper investigates the steady-state periodic response and the chaos and bifurcation of an axially accelerating viscoelastic Timoshenko beam. For the first time, the nonlinear dynamic behaviors in the transverse parametric vibration of an axially moving Timoshenko beam are studied. The axial speed of the system is assumed as a harmonic variation over a constant mean speed. The transverse motion of the beam is governed by nonlinear integro-partial-differential equations, including the finite axial support rigidity and the longitudinally varying tension due to the axial acceleration. The Galerkin truncation is applied to discretize the governing equations into a set of nonlinear ordinary differential equations. Based on the solutions obtained by the fourth-order Runge–Kutta algorithm, the stable steady-state periodic response is examined. Besides, the bifurcation diagrams of different bifurcation parameters are presented in the subcritical and supercritical regime. Furthermore, the nonlinear dynamical behaviors are identified in the forms of time histories, phase portraits, Poincaré maps, amplitude spectra, and sensitivity to initial conditions. Moreover, numerical examples reveal the effects of various terms Galerkin truncation on the amplitude–frequency responses, as well as bifurcation diagrams.  相似文献   

12.
Principal parametric resonance in transverse vibration is investigated for viscoelastic beams moving with axial pulsating speed. A nonlinear partial-differential equation governing the transverse vibration is derived from the dynamical, constitutive, and geometrical relations. Under certain assumption, the partial-differential reduces to an integro-partial-differential equation for transverse vibration of axially accelerating viscoelastic nonlinear beams. The method of multiple scales is applied to two equations to calculate the steady-state response. Closed form solutions for the amplitude of the vibration are derived from the solvability condition of eliminating secular terms. The stability of straight equilibrium and nontrivial steady-state response are analyzed by use of the Lyapunov linearized stability theory. Numerical examples are presented to highlight the effects of speed pulsation, viscoelascity, and nonlinearity and to compare results obtained from two equations.  相似文献   

13.
To investigate the principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string, the method of multiple scales is applied directly to the nonlinear partial differential equation that governs the transverse vibration of the string. To derive the governing equation, Newton‘s second law, Lagrangean strain, and Kelvin‘s model are respectively used to account the dynamical relation, geometric nonlinearity and the viscoelasticity of the string material. Based on the solvability condition of eliminating the secular terms, closed form solutions are obtained for the amplitude and the existence conditions of nontrivial steady-state response of the principal parametric resonance. The Lyapunov linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions in the principal parametric resonance. Some numerical examples are presented to show the effects of the mean transport speed, the amplitude and the frequency of speed variation.  相似文献   

14.
Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations are presented. A non-linear partial-differential equation governing the transverse vibration of the beams is derived from Newton's second law, the Kelvin constitutive relationship, and the Lagrangian strain. Based on 1-term Galerkin's truncation, the governing equation is reduced to an ordinary differential equation. Three cases, including superharmonic resonance case, subharmonic resonance, and combination resonance are studied. The approximate solutions of the transverse vibration of the beams are obtained. Numerical results show that the approximate solutions are in good agreement with numerical results.  相似文献   

15.
In this study, stability and dynamic behaviour of axially moving viscoelastic panels are investigated with the help of the classical modal analysis. We use the flat panel theory combined with the Kelvin–Voigt viscoelastic constitutive model, and we include the material derivative in the viscoelastic relations. Complex eigenvalues for the moving viscoelastic panel are studied with respect to the panel velocity, and the corresponding eigenfunctions are found using central finite differences. The governing equation for the transverse displacement of the panel is of fifth order in space, and thus five boundary conditions are set for the problem. The fifth condition is derived and set at the in-flow end for clamped–clamped and clamped-simply supported panels. The numerical results suggest that the moving viscoelastic panel undergoes divergence instability for low values of viscosity. They also show that the critical panel velocity increases when viscosity is increased and that the viscoelastic panel does not experience instability with a sufficiently high viscosity coefficient. For the cases with low viscosity, the modes and velocities corresponding to divergence instability are found numerically. We also report that the value of bending rigidity (bending stiffness) affects the distance between the divergence velocity and the flutter velocity: the higher the bending rigidity, the larger the distance.  相似文献   

16.
Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams, the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain. The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.  相似文献   

17.
In this paper, a Fourier expansion-based differential quadrature (FDQ) method is developed to analyze numerically the transverse nonlinear vibrations of an axially accelerating viscoelastic beam. The partial differential nonlinear governing equation is discretized in space region and in time domain using FDQ and Runge–Kutta–Fehlberg methods, respectively. The accuracy of the proposed method is represented by two numerical examples. The nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the axially accelerating viscoelastic beam, are investigated using the bifurcation diagrams, Lyapunov exponents, Poincare maps, and three-dimensional phase portraits. The bifurcation diagrams for the in-plane responses to the mean axial velocity, the amplitude of velocity fluctuation, and the frequency of velocity fluctuation are, respectively, presented when other parameters are fixed. The Lyapunov exponents are calculated to further identify the existence of the periodic and chaotic motions in the transverse nonlinear vibrations of the axially accelerating viscoelastic beam. The conclusion is drawn from numerical simulation results that the FDQ method is a simple and efficient method for the analysis of the nonlinear dynamics of the axially accelerating viscoelastic beam.  相似文献   

18.
This study is intended to analyze dynamic behavior of beams on Pasternak-type viscoelastic foundation subjected to time-dependent loads. The Timoshenko beam theory is adopted in the derivation of the governing equation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate exactly the dynamic stiffness matrix of the problem. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. The dynamic response of beams on viscoelastic foundation is analyzed through various examples.  相似文献   

19.
We analytically solve the time-dependent problem of a simply-supported laminated beam, composed of two elastic layers connected by a viscoelastic interlayer, whose response is modeled by a Prony’s series of Maxwell elements. This case applies in particular to laminated glass, a composite made of glass plies bonded together by polymeric films. A practical way to calculate the response of such a package is to consider also the interlayer to be linear elastic, assuming its equivalent elastic moduli to be the relaxed moduli under constant strain, after a time equal to the duration of the design action. The obtained results, that are confirmed by a full 3-D viscoelastic finite-element numerical analysis, emphasize that there is a noteworthy difference between the state of strain and stress calculated in the full-viscoelastic case or in the aforementioned “equivalent” elastic problem.  相似文献   

20.
In this paper, the viscoelastic theory is applied to the axially moving Levy-type plate with two simply supported and two free edges. On the basis of the elastic – viscoelastic equivalence, a linear mathematical model in the form of the equilibrium state equation of the moving plate is derived in the complex frequency domain. Numerical calculations of dynamic stability were conducted for a steel plate. The effects of transport speed and relaxation times modeled with two-parameter Kelvin–Voigt and three-parameter Zener rheological models on the dynamic behavior of the axially moving viscoelastic plate are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号