共查询到20条相似文献,搜索用时 15 毫秒
1.
采用直接共聚法合成表面含有乙烯基的具有立方相Ia3d结构的介孔硅分子筛(V-ClMS),然后对乙烯基团进行环氧化制备得到表面环氧基功能化的介孔硅分子筛(E-CIMS),采用X射线衍射、N2吸附-脱附、透射电镜、热重分析和13C固体核磁共振对制备的介孔硅分子筛进行了表征.结果表明,表面含有乙烯基的V-ClMS介孔硅分子筛能被一步成功合成,并易于发生环氧化而获得表面环氧基功能化的E-CIMS介孔硅分子筛.将E-CIMS介孔硅分子筛作为载体用于固定化青霉素G酰化酶(PGA),研究了表面环氧基团对固定化PGA初活性和操作稳定性的影响.结果表明,随着表面环氧基团数量的增加,介孔硅分子筛孔径减小,表面疏水性增加,导致载酶量和初活性减小.但介孔硅分子筛表面适量的环氧基团能增强E-CIMS介孔硅分子筛与PGA之间的相互作用,从而提高固定化PGA的操作稳定性. 相似文献
2.
Novel mesoporous silica-immobilized rhodamine (MSIR) and silica particle-immobilized rhodamine (SPIR) anchored by a tren (N(CH2CH2NH2)3) were synthesized. The binding and adsorption abilities of both MSIR and SPIR for metal cations were investigated with fluorophotometry and ion chromatography, respectively. Both MSIR and SPIR show selectivity for Hg2+ ion over other metal cations because the Hg2+ ion selectively induces a ring opening of the rhodamine fluorophores. The sensitivity of the MSIR for Hg2+ ion is greater than that of the SPIR and the MSIR adsorbs 70% of Hg2+ ion while the SPIR does only 40%. The MSIR can be also easily recovered by treatment of a solution of TBA+OH−. For the application of Hg2+ detection in the environmental field, the MSIR-coated glass plate is also developed and exhibits an excellent function in visual and fluorescence changes with Hg2+ ion. 相似文献
3.
Aminopyrene functionalized mesoporous silica for the selective determination of resorcinol 总被引:1,自引:0,他引:1
Aminopyrene was convalently anchored onto the surface of mesoporous MCM-41 silica by post-grafting. This organic-inorganic hybrid has been applied as sensing material to phenols determination. Experimental results reveal that the functionalized material presents good sensitivity and selectivity towards resorcinol and can be used for resorcinol determination in water at pH 6.0. The fluorescence intensity of aminopyrene functionalized mesoporous silica decreases proportionally to the logarithm of resorcinol concentration in water. The linear range for resorcinol detection lies in 4.79-163 μM with a detection limit of 2.86 μM (S/N = 3). 相似文献
4.
In the past decade, mesoporous silica nanoparticles (MSNs) as nanocarriers have showed much potential in advanced nanomaterials due to their large surface area and pore volume. Especially, more and more MSNs based nanodevices have been designed as efficient drug delivery systems (DDSs) or biosensors. In this paper, lipid, protein and poly(NIPAM) coated MSNs are reviewed from the preparation, properties and their potential application. We also introduce the preparative methods including physical adsorption, covalent binding and self-assembly on the MSNs' surfaces. Furthermore, the interaction between the aimed cells and these molecular modified MSNs is discussed. We also demonstrate their typical applications, such as photodynamic therapy, bioimaging, controlled release and selective recognition in biomedical field. 相似文献
5.
Novel spherical mesoporous silica materials with uniform diameters and starburst mesopore structures were synthesized by a simple one-step procedure with ethanol as the co-solvent in dilute aqueous solution and their formation mechanism was proposed. The arrangement of the pore canal and the diameter of the sphere could be tailored by altering the concentration of ethanol. 相似文献
6.
Nezar H. Khdary Mohamed A. Ghanem Mamduoh E. Abdesalam Mohamed M. Al-Garadah 《Journal of Saudi Chemical Society》2018,22(3):343-351
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration. 相似文献
7.
Atsushi Nakahira Hidezumi Nagata Takamasa Onoki Yuki Yamasaki 《Research on Chemical Intermediates》2008,34(4):347-352
Synthesis of mesoporous MCM-type bulks prepared by hydrothermal hot-pressing (HHP) method using MCM-type mesoporous powder
was attempted. Scanning electron microscopy (SEM), bulk density measurement, N2 adsorption-desorption isotherms and formaldehyde adsorption test have been employed to characterize the bulky products. As
a result, we succeeded in preparing a dense and strong mesoporous bulks with high BET over 1000 m2/g through the hydrothermal hot-pressing method under appropriate conditions. 相似文献
8.
Zirconia layer coated mesoporous silica microspheres with mesostructured cellular foams (MCFs) were prepared by NH3/water vapor-induced internal hydrolysis method. Zirconia layer coated MCF microspheres were characterized by SEM, XRD, N2 sorption, UV, and chromatographic analysis, and explored for enrichment of phosphopeptides. ZrO2/MCF microspheres in solid-phase extraction (SPE) mode demonstrated much higher selectivity and higher efficiency towards phosphopeptide enrichment than bulk ZrO2 particles. In particular, the selectivities of ZrO2/MCF microspheres towards multi-phosphopeptides are even higher than that of the widely used commercial TiO2 microparticles. The ZrO2/MCF microspheres were also applied to enrich endogenous phosphopeptides from human serum, and twelve endogenous phosphorylated peptides could be specifically enriched. 相似文献
9.
Two kinds of porphyrin-doped silica films with mesoporous structures were fabricated using evaporation-introduced self-assembly
approach and examined for chemosensor applications to detect explosive compounds such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene
(DNT), and nitrobenzene (NB). All synthesized silica films showed high fluorescence quenching sensitivity toward the vapors
of TNT, DNT, and NB but is strongly dependent on pore structure. The silica film with three dimensional pore structure exhibits
the highest quenching efficiency close to the quenching efficiency reported for emissive conjugated polymers, indicating these
kinds of mesostructured composites are potentially useful chemosensory materials for rapidly detecting trace explosives. The
preparation conditions, the structures of the resulting films, their sensing performances, and the fluorescence quenching
mechanism were discussed in this paper. 相似文献
10.
Xianfeng Pei Juan Zhang Sibing Wang Yuxia Chen Xiaojian Wu Yi Li Baozong Li Yonggang Yang 《Journal of Sol-Gel Science and Technology》2009,50(3):397-402
Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of a gelator as
template previously. The TEM images were simulated using Autodesk 3D studio MAX 9.0 here. These hierarchical nanotubes were
organized into μm-size balls by increasing the concentration of gelator and controlling stirring speed. Bimodal pore structure
was identified by a N2 adsorption method. 相似文献
11.
Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica 总被引:1,自引:0,他引:1
Louse Barry Mark Copley Justin D. Holmes David J. Otway Olga Kazakova Michael A. Morris 《Journal of solid state chemistry》2007,180(12):3443-3449
Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas. 相似文献
12.
Tianlu Zhang Zhiguo Lu Luyao Zhang Yan Li Jun Yang Jie Shen Jianze Wang Yunwei Niu Zuobing Xiao Lei Chen Xin Zhang 《中国化学快报》2020,31(12):3135-3138
Fragrances are widely used in many aspects of our lives.They cannot only make people happy,but also treat many diseases.However,excessively fast evaporation rate is one of the main obstacles to the use of spices.In this study,mesoporous silica nanorods(MSNRs) and hollow mesoporous silica nanorods(HMSNRs) were prepared to encapsulate eugenol.These two nano-fragrances were named eugenol@MSNRs and eugenol@HMSNRs,respectively.The morphologies,size,interior structures and pore performances of MSNRs a... 相似文献
13.
Ordered mesoporous silica with macroscopic shape has been prepared with a hybrid template of gel and poly(ethylene oxide)106–poly(propylene oxide)70–poly(ethylene oxide)106 (pluronic F127) surfactant, where both water-soluble agar gel and pluronic F127 significantly affect the mesoporous structure and morphology of silica. The thermal analysis revealed the noticeable interaction between agar and F127, which contributes to the formation of homogenous hybrid template. In the hybrid template, agar gel contributed to the maintenance of morphology structure, while F127 was responsible for the formation of ordered porous structure in silica solids. 相似文献
14.
Polyimide/mesoporous silica composite films were prepared by direct mixing of polyamic acid solution and silylated mesoporous silica particles, or by condensation polymerization of dianhydride and diamine with silylated mesoporous silica particles in N,N-dimethylacetamide, followed with thermal imidization. Structure and glass transition temperatures of the composite films were measured with FTIR, SEM, EDX, XPS and DMTA. The results show that the silylated mesoporous silica particles in the composites tend to form the aggregation with a strip shape due to phase separation. The composite films exhibit higher glass transition temperature as comparing with that of pure polyimide. It is found that the composite films present lower infrared emissivity value than the pure polyimide and the magnitude of infrared emissivity value is related to the content of silylated mesoporous silica in the composite films. Inhibiting actions of silylated mesoporous silica on infrared emission of the composite films may be owing to presence of nanometer-scale pores in silylated mesoporous silica. 相似文献
15.
Tianlu Zhang Zhiguo Lu Luyao Zhang Yan Li Jun Yang Jie Shen Jianze Wang Yunwei Niu Zuobing Xiao Lei Chen Xin Zhang 《中国化学快报》2021,31(12):3135-3138
Fragrances are widely used in many aspects of our lives. They cannot only make people happy, but also treat many diseases. However, excessively fast evaporation rate is one of the main obstacles to the use of spices. In this study, mesoporous silica nanorods (MSNRs) and hollow mesoporous silica nanorods (HMSNRs) were prepared to encapsulate eugenol. These two nano-fragrances were named eugenol@MSNRs and eugenol@HMSNRs, respectively. The morphologies, size, interior structures and pore performances of MSNRs and HMSNRs. Besides, the performances of encapsulation and fragrance release of eugenol@MSNRs and eugenol@HMSNRs were compared and analyzed. The results showed that eugenol@HMSNRs encapsulated more fragrance and were faster to encapsulate compared with eugenol@MSNRs. Both the release rates of eugenol from eugenol@MSNRs and eugenol@HMSNRs were slow. But the eugenol was released from eugenol@MSNRs more slowly. 相似文献
16.
功能化含钨介孔硅材料的直接合成表征及其在多相氧化脱硫中的应用 总被引:1,自引:0,他引:1
温和条件下,燃油深度脱硫一直是非常重要的研究课题.目前,加氢脱硫(HDS)是石油工业上广泛采用的脱硫技术,它能够有效脱除燃油中的硫醚、硫醇和等无机硫化物,但对于芳香族硫化物(如二苯并噻吩、4,6-二甲基二苯并噻吩等),则效果较差.对于上述有机硫化物的深度脱除,现有的加氢脱硫技术需要更为苛刻的反应条件,如高温、高压、高活性贵金属催化剂等,这势必导致燃油成本的大幅上升.因此,世界各国科学家都加强了高效非加氢脱硫方法的研究,主要包括氧化脱硫法、吸附脱硫法、萃取脱硫法和生物脱硫法等,其中氧化脱硫法是一种公认的具有应用前景的高效脱硫技术,该技术只需在常温常压下进行,可将含硫化合物氧化成其相应的砜类物质后,再用溶剂萃取法或吸附法除去.氧化脱硫反应中所涉及氧化剂有过氧化氢、有机过氧化物和氧气等.在这些氧化剂中,过氧化氢由于其活性高,在氧化反应后的副产物只有水,而被广泛研究.
离子液体作为一种低温熔融盐,因其独特的理化性质,如无蒸气压、低毒性、良好的溶解性以及结构可调等,受到了广泛的关注.其中,功能化多酸基离子液体不仅具备离子液体的特点,还具备多金属氧酸盐的优势,已被用于燃油的均相氧化脱硫过程中.但是,此过程中离子液体往往用量较大,催化剂难于回收和循环利用,氧化剂用量较大,阻碍其在工业中的应用.为了克服上述缺点,本课题组以多酸基离子液体[C16mim]3PW12O40和正硅酸四乙酯为原料通过溶胶-凝胶法直接合成了一系列含钨功能化介孔复合材料 W-SiO2,其中咪唑型阳离子作为介孔模板剂,而多酸阴离子作为金属源.采用 XRD, IR, Raman, BET, DRS, TEM等测试手段对所合成的材料进行了表征.结果表明,钨活性物种是以氧化钨的形式存在,并且能够均匀地分散在载体二氧化硅上,所合成的材料比表面积为513–743 m2/g,孔体积为0.37–0.50 cm3/g,孔径为2.91–3.20 nm.将所合成的材料 W-SiO2-20应用于燃油氧化脱硫反应(过程中无需有机溶剂),结果表明,所合成的复合材料既能作为吸附剂来吸附有机硫化物,又能作为催化剂来活化过氧化氢以氧化有机硫化物.在最优条件(反应温度60oC, O/S摩尔比为2.5,反应时间40 min)下,二苯并噻吩脱除率可100%,而且反应体系易于循环使用,7次循环后脱硫率无明显降低.此外,还考察了复合材料在相同条件下对于不同硫化物的脱除效果,结果表明,反应活性顺序为4,6-DMDBT> DBT> BT> DT. 相似文献
离子液体作为一种低温熔融盐,因其独特的理化性质,如无蒸气压、低毒性、良好的溶解性以及结构可调等,受到了广泛的关注.其中,功能化多酸基离子液体不仅具备离子液体的特点,还具备多金属氧酸盐的优势,已被用于燃油的均相氧化脱硫过程中.但是,此过程中离子液体往往用量较大,催化剂难于回收和循环利用,氧化剂用量较大,阻碍其在工业中的应用.为了克服上述缺点,本课题组以多酸基离子液体[C16mim]3PW12O40和正硅酸四乙酯为原料通过溶胶-凝胶法直接合成了一系列含钨功能化介孔复合材料 W-SiO2,其中咪唑型阳离子作为介孔模板剂,而多酸阴离子作为金属源.采用 XRD, IR, Raman, BET, DRS, TEM等测试手段对所合成的材料进行了表征.结果表明,钨活性物种是以氧化钨的形式存在,并且能够均匀地分散在载体二氧化硅上,所合成的材料比表面积为513–743 m2/g,孔体积为0.37–0.50 cm3/g,孔径为2.91–3.20 nm.将所合成的材料 W-SiO2-20应用于燃油氧化脱硫反应(过程中无需有机溶剂),结果表明,所合成的复合材料既能作为吸附剂来吸附有机硫化物,又能作为催化剂来活化过氧化氢以氧化有机硫化物.在最优条件(反应温度60oC, O/S摩尔比为2.5,反应时间40 min)下,二苯并噻吩脱除率可100%,而且反应体系易于循环使用,7次循环后脱硫率无明显降低.此外,还考察了复合材料在相同条件下对于不同硫化物的脱除效果,结果表明,反应活性顺序为4,6-DMDBT> DBT> BT> DT. 相似文献
17.
Yu-Jie Chang Xi-Zhen Liu Qing Zhao Xiao-Hai Yang Ke-Min Wang Qing Wang Min Lin Meng Yang 《中国化学快报》2015,26(10):1203-1208
A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on' and ‘‘off'reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery. 相似文献
18.
Norihisa Fukaya Hisato Haga Syun-ya Onozawa Hiroyuki Yasuda 《Journal of organometallic chemistry》2010,695(23):2540-2542
Organic functionalization of a silica surface has been realized by employing arylsilanes. Grafting reactions of aryl(3-chloropropyl)dimethylsilanes (aryl = p-anisyl, p-tolyl, phenyl) with silica were carried out in heptane at 80 °C for 24 h. The 29Si and 13C CP/MAS spectra of the obtained silica materials clearly showed that the 3-chloropropyldimethylsilyl moieties were cleanly grafted onto silica via a siloxane (Si-O-Si) bond accompanied by the release of the aryl groups. The loading amounts on FSM-type mesoporous silica (TMPS-4) with aryl(3-chloropropyl)dimethylsilanes were comparable to those with 2-propenylsilane and the most commonly used methoxysilane. 相似文献
19.
The controllable preparation and forming mechanism of rare-earth Y3+ and Eu3+ chemically co-doped fluorescent mesoporous silica were studied in detail. Their structures, morphologies, chemical compositions and emission properties were characterized and evaluated by small angle X-ray scattering, nitrogen adsorption/desorption measurements, high resolution transmission electron microscopy, inductive coupled plasma-atomic emission, X-ray photoelectron spectra and fluorescent spectroscopy. The results show that chemical composition of the resultant mesoporous materials were significantly affected by solution acidity condition, and can be effectively adjusted by varying the feed ratio of raw materials at a suitable solution acidity condition. These materials with a well-ordered two-dimensional hexagonal mesoporous structure and high specific surface area exhibit significantly broadened emission band from 526 to 682 nm and the fluorescent emission mechanism and influence of materials structure on optical properties were investigated. 相似文献
20.
AbstractAmino-functionalized mesoporous silica nanoparticles (AFMSN) were prepared based on the self-assembly process of the pre-fabricated template of anionic gemini surfactant. The perfect mass ration of the reactants for the synthesis of the AFMSN with high surface area and amino loading was optimized by orthogonal experiments. Adsorption capability of the optimized product for lead ion (Pb2+) was investigated in detail. Specially, the effects of the amino content, solution pH, adsorbent dosage, temperature, and interference of other metal ions on the removal efficiency of Pb2+ were studied. It is found that these factors can greatly affect the removal efficiency of Pb2+ and the prepared adsorbent exhibits the high adsorption selectivity for Pb2+. At an optimal condition, the AFMSN adsorbent presents an excellent adsorption capacity for Pb2+ up to 211.42?mg/g. The adsorption kinetics study revealed that the pseudo-second-order model could well describe the Pb2+ adsorption process, and the adsorption isotherm was fitted well with the Langmuir model. More importantly, the AFMSN adsorbent could be recycled 8 times and a high adsorption efficiency of Pb2+ could still be maintained. Therefore, the prepared AFMSN adsorbent may find practical application in removing Pb2+ from the polluted water. 相似文献