首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文给出了函数有向图计数式的一个简短证明  相似文献   

2.
关于交换群上的Cayley有向图的正规性   总被引:1,自引:0,他引:1  
Cayley有向图X=Cay(G,S)叫做正规的,如果G的右正则表示R(G)在X的全自同构群Aut(X)中正规,我们定出了交换群上的小度数的非正规的Cayley有向图, 并给出了一个猜想.应用这个结果,给出了pn(n≤2)个点上的度数不超过3的有向对称图的分类,这里p是一个奇素数.  相似文献   

3.
4.
利用围道积分法和Riemann Zeta函数的函数方程给出了Riemann Zeta函数的另一种积分表达式,该表达式可以将Riemann Zeta函数延拓到指定的右半平面.利用该表达式求出了ζ(2n)、ζ(1-2n)和ζ’(0),并且计算了Riemann Zeta函数非平凡零点的部分数值解.该积分表达式的引出丰富了与Riemann Zeta函数延拓表达式相关问题的研究.  相似文献   

5.
徐策  程金发 《数学学报》2016,59(2):151-162
通过构造一个Riemann Zeta函数ζ(k)的部分和ζ_n(k)的幂级数函数,利用牛顿二项式展开及柯西乘积公式可以计算出一些重要的和式.再将该幂级数函数由一元推广到二元甚至多元,由此得到Riemann Zeta函数的高次方和式之间的关系.并利用对数函数与第一类Stirling数之间的关系式及ζ(k)函数满足的相关等式,可得出Riemann Zeta函数的18个七阶和式,以及其它一些高次方的和式.  相似文献   

6.
Riemann Zeta函数在临界线上的δ-平均值   总被引:1,自引:0,他引:1  
本文改进了Maier Wilhelm关于Riemann Zeta函数的δ-平均值结果  相似文献   

7.
运用基图自同构能被提升的线性准则 ,对满足 :1覆叠变换群 K =Znp,2覆盖图的保簇变换群是点传递的 Petersen图的连通正则覆盖图进行了完全分类 .这种图共有 1 2种类型 .  相似文献   

8.
K5的弧传递循环正则覆盖   总被引:1,自引:0,他引:1  
-个图称为弧传递的,如果它的自同构群在其弧集合上作用传递.冯衍全等已经决定了4阶完全图K4的弧传递循环正则覆盖,本文给出了5阶完全图K5的弧传递循环正则覆盖的分类.  相似文献   

9.
设K=Q(ζm)为m次分圆域,K 为其最大实子域,ζK(s)和ζK (s)为K和K 的DedekindZeta函数.对于m=pS和pq(其中p,q为奇素数),本文分别得到了Zeta函数值ζK (1-n)和ζK(1-n)/ζK (1-n)的计算公式,其中n为任意正整数.这发展了F.Hazama最近的关于p次分圆域的结果,还纠正了其一处系数错误.  相似文献   

10.
设K=Q(ζm)为m次分圆域,K+为其最大实子域,ζK(s)和ζK+(s)为K和K+的DedekindZeta函数.对于m=ps和pq(其中p,q为奇素数),本文分别得到了Zeta函数值ζK+(1-n)和ζK(1-n)/ζK+(1-n)的计算公式,其中n为任意正整数.这发展了F.Hazama最近的关于p次分圆域的结果,还纠正了其一处系数错误.  相似文献   

11.
We give a decomposition formula for the zeta function of a group covering of a graph.  相似文献   

12.
Let (s, ) be the Hurwitz zeta function with parameter . Powermean values of the form are studied, where q and h are positive integers. These mean valuescan be written as linear combinations of , where r(s1,...,sr;) is a generalization of Euler–Zagiermultiple zeta sums. The Mellin–Barnes integral formulais used to prove an asymptotic expansion of , with respect to q. Hence a general way of deducingasymptotic expansion formulas for is obtained. In particular, the asymptotic expansion of with respect to q is written down.  相似文献   

13.
14.
15.
Poles of Zeta Functions on Normal Surfaces   总被引:3,自引:0,他引:3  
Let (S, 0) be a normal surface germ and Let f a non-constantregular function on Let (S, 0) with Let f(0) = 0. Using anyadditive invariant on complex algebraic varieties one can associatea zeta function to these data, where the topological and motiviczeta functions are the roughest and the finest zeta functions,respectively. In this paper we are interested in a geometricdetermination of the poles of these functions. The second authorhas already provided such a determination for the topologicalzeta function in the case of non-singular surfaces. Here wegive a complete answer for all normal surfaces, at least onthe motivic level. The topological zeta function however seemsto be too rough for this purpose, although for negative poles,which are the only ones in the non-singular case, we are ableto prove exactly the same result as for non-singular surfaces. We also give and verify a (natural) definition for when a rationalnumber is a pole of the motivic zeta function. 2000 MathematicsSubject Classification 14B05, 14E15, 14J17 (primary), 32S50(secondary).  相似文献   

16.
17.
Deformation Theory and The Computation of Zeta Functions   总被引:3,自引:0,他引:3  
We present a new approach to the problem of computing the zetafunction of a hypersurface over a finite field. For a hypersurfacedefined by a polynomial of degree d in n variables over thefield of q elements, one desires an algorithm whose runningtime is a polynomial function of dn log(q). (Here we assumed 2, for otherwise the problem is easy.) The case n = 1 isrelated to univariate polynomial factorisation and is comparativelystraightforward. When n = 2 one is counting points on curves,and the method of Schoof and Pila yields a complexity of , where the function Cd depends exponentiallyon d. For arbitrary n, the theorem of the author and Wan givesa complexity which is a polynomial function of (pdn log(q))n,where p is the characteristic of the field. A complexity estimateof this form can also be achieved for smooth hypersurfaces usingthe method of Kedlaya, although this has only been worked outin full for curves. The new approach we present should yielda complexity which is a small polynomial function of pdn log(q).In this paper, we work this out in full for Artin–Schreierhypersurfaces defined by equations of the form ZpZ= f, where the polynomial f has a diagonal leading form. Themethod utilises a relative p-adic cohomology theory for familiesof hypersurfaces, due in essence to Dwork. As a corollary ofour main theorem, we obtain the following curious result. Letf be a multivariate polynomial with integer coefficients whoseleading form is diagonal. There exists an explicit deterministicalgorithm which takes as input a prime p, outputs the numberof solutions to the congruence equation f = 0 op, and runs in bit operations, for any >0. This improves upon the elementary estimate of bit operations, where n is the number of variables,which can be achieved using Berlekamp's root counting algorithm.2000 Mathematics Subject Classification 11Y99, 11M38, 11T99.  相似文献   

18.
The theory of poles of solutions of Painleve I (PI) is equivalent to the Nevanlinna problem of constructing a meromorphic function ramified over five points—counting multiplicities—and without critical points. We construct such meromorphic functions as limits of rational ones. In the case of the tritronquée solution, they turn out to be Belyi functions.  相似文献   

19.
It is proved that if PG(s) has an Euler product expansion withall factors of the form where each qi is a prime power, then G is soluble. 2000 MathematicsSubject Classification 20P05, 20F05, 11M41.  相似文献   

20.
The exceptional group G2 has two maximal parabolic subgroups corresponding to theso-called long root and short root. In this paper, the secondnamed author introduces two zeta functions associated with and respectively, and the first named author proves that these zetassatisfy the Riemann hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号