首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
徐天宁  李翔  贾文旺  隋成华  吴惠桢 《物理学报》2015,64(24):245201-245201
五边形截面的单晶Ag纳米线对ZnO量子点荧光具有增强的现象. 为解释这一现象, 利用时域有限差分法对五边形截面的Ag纳米线的局域表面等离子体共振模式进行了理论模拟. 结果表明, 五边形截面的Ag纳米线在紫外区域存在两个消光峰, 分别由Ag纳米线的横向偶极共振(340 nm)和四极共振(375 nm)引起; 这两个消光峰与ZnO量子点荧光增强峰相一致, 而且随着Ag纳米线的半径增大而红移; 消光峰对应的共振模式取决于Ag纳米线的截面形状; 根据Ag纳米线电场增强倍数与激发光波长变化关系曲线可知, 最大增强电场位于五边形截面的顶点处, 而边线处电场增强较小. 理论模拟的结果较好地解释了Ag纳米线/ZnO量子点体系的荧光增强现象, 也为Ag纳米线在提高半导体材料发光效率、生物探测等方面的应用提供有益的参考.  相似文献   

2.
No known reports exist on luminescence enhancement under polarized light excitation. In this study, ZnS nanocrystals have been observed to produce brighter luminescence when excited by polarized light. ZnS:Mn bulk and nanocrystals have shown fivefold to tenfold increase in photoluminescence (PL) intensity when excited with linearly polarized light at 305 nm and 340 nm. Luminescence enhancement to a lesser degree was observed with linearly polarized light excitation for ZnS:Cu, Al and ZnS:Ag, Al nanocrystals. The observations suggest emission intensity dependence on the degree of anisotropy, which could be correlated mainly with the symmetry of the luminescence center and also to a lesser extent with nanoparticle shape asymmetry.  相似文献   

3.
张平  张雅鑫  周俊  刘维浩  钟任斌  刘盛纲 《中国物理 B》2012,21(10):104102-104102
With the aid of a three-dimensional particle-in-cell code simulation,the enhancement of Smith-Purcell radiation with a surface-plasmon mode excited by a single electron bunch and by a premodulated electron beam is considered in the paper.In the simulation,the model is a grating covered by Ag film.The results demonstrate that when the surface-plasmon mode is excited by a single electron bunch,the maximum radiation occurs at an observation angle depending on the surface-plasmon frequency,and the radiation power can be enhanced more than ten times.And for pre-bunched electron beam excitation,when one of the harmonics of the bunching frequency is resonant with that of the surface-plasmon mode,the radiation power is twenty times more than that from a perfectly conducting grating excited by the same premodulated electron beam.  相似文献   

4.
颜军  孙猛 《光学学报》1995,15(8):019-1023
用皮秒时间分辨的双波耦合方法研究了有机高聚物非醚的三阶非线性光学增强。在激发效率未饱和的情况下观察到材料的有效三阶超极化率γ增强两倍。与激发荧光实验相结合,验证了γ的激发增强与激发态粒子布居数成线性关系;并用三能级模型解释了实验观测到的激发态增强的时间过程。  相似文献   

5.
Jian-Mei Li 《中国物理 B》2022,31(11):116801-116801
We investigated the photon emission spectra on Ag (111) surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag) nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances, which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.  相似文献   

6.
A new method for the detection of low oxygen concentration is proposed here. The system is based on the principle of enhancement of fluorescence yield of tetraphenylporphine (TPP) dye at λ=656 nm when excited by He-Cd laser at λ =441 nm in the presence of oxygen. The sensor head was fabricated by cladding the ARTON fiber core with the poly-4-methy1-1-pentene polymer matrix doped with TPP. The experimental results obtained indicate a good enhancement in the fluorescence when the sensor head is exposed to oxygen. The response was found to be linear and stable in the range of (100 ppm-1%) with the resolution of 0.01%. The sensor response was characterized by studying its response for change in temperature and is discussed below.  相似文献   

7.
Polymer blended films of polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):lithium perchlorate (LiClO4) embedded with silver (Ag) nanofiller in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of these polymer films has been confirmed from their X-ray diffraction (XRD) profiles. Fourier transform infrared spectroscopy (FTIR) and Raman analysis confirmed the complex formation of the polymer with dopant ions. Dispersed Ag nanofiller size evaluation study has been done using transmission electron microscopy (TEM) analysis. It was observed that the conductivity increases when increasing the Ag nanofiller concentration. On the addition of Ag nanofiller to the polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14?×?10?5 S cm?1 at the optimized concentration of 4 wt% Ag nanofiller-embedded (45 wt%) polyethylene oxide (PEO)?+?(45 wt%) polyvinyl pyrrolidone (PVP):(10 wt%) Li+ polymer electrolyte nanocomposite at room temperature. Polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ +Ag nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. This is ascribed to the presence of flexible matrix and high ionic conductivity. The applicability of the present 4 wt% Ag nanofiller-dispersed polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ polymer electrolyte system could be suggested as a potential candidate for solid-state battery applications. Dielectric constants and dielectric loss behaviours have been studied.  相似文献   

8.
By the use of an ATR technique we have found that the infrared absorption of p-nitrobenzoate, formed on Ag island film about 5 nm thick, is enhanced by a factor of the order of 10. Only vibrational modes involving a change in the dipole moment of the benzoate ion perpendicular to the macroscopic Ag surface are enhanced by p-polarized radiation alone, indicating the electric field of the evanescent wave polarized perpendicular to the Ag surface plays a dominant role in the infrared excitation process. A monolayer of stearic acid deposited on a Ag underlayer 5nm thick gave another example of the enhancement. Although the mechanism of enhancement is not fully elucidated, the existing model based on the collective electron resonances of Ag islands is not applicable to the present case, since it predicts the electron resonance can be excited irrespective of polarization state of infrared beam.  相似文献   

9.
A novel gap-plasmon-tunable Ag bilayer nanoparticle film for immunoassays is demonstrated. Different from a traditional Ag monolayer nanoparticle film, a desired number of polyelectrolyte (PEL) layers are deposited on the nanoparticles before the self-assembly of a second Ag nanoparticle layer. Interestingly, by controlling the number of the PEL interlayers, the gap plasmon between the two Ag nanoparticle layers can be tuned across the visible spectral range. The ability of the presented Ag bilayer nanoparticle films in fluorescence enhancement has been examined experimentally. A maximal enhancement of around 15.4 fold was achieved when 7 layers of polyelectrolyte were used. When this optimal Ag bilayer nanoparticle film was applied to fluorescence immunoassay, a performance with approximately 3.3-fold enhancement was obtained compared with that performed on a traditional glass substrate. The experimental results suggest that the presented gap-plasmon tunable Ag bilayer nanoparticle films have great potential in fluorescence-based immunoassays. The method of the bilayer-film construction presented here also provides new insights into the rational design of the plasmonic substrates.  相似文献   

10.
Ag:ZnO hybrid nanostructures were successfully prepared by a twice arc discharge method in liquid. The visible light photocatalytic activities were successfully demonstrated for the degradation of Rhodamine B (Rh. B), Methyl orange (MO), and Methylene blue (MB) as standard organic compounds under the irradiation of 90 W halogen light for 2 h. The Ag:ZnO nanostructures were characterized by X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The results revealed that the Ag:ZnO nanostructures extended the light absorption spectrum toward the visible region and significantly enhanced the Rh. B photodegradation under visible light irradiation. 3 mM Ag:ZnO nanostructures exhibited highest photocatalytic efficiency. It has been confirmed that the Ag:ZnO nanostructures could be excited by visible light (E<3.3 eV). The significant enhancement in the Ag:ZnO nanostructures photocatalytic activity under visible light irradiation can be ascribed to the effect of physisorbed noble metal Ag by acting as electron traps in ZnO band gap. A mechanism for photocatalytic degradation of organic pollutant over Ag:ZnO photocatalyst was proposed based on our observations.  相似文献   

11.
As an employment of surface plasmonic effect, the consequence of insertion of a layer of Ag clusters into polymer solar cell on the enhancement of light absorption and power conversion efficiency is investigated. Optical analysis based on the finite-difference time-domain (FDTD) is performed with experiments to evaluate the effect of the interaction between the Ag clusters and incident light on light absorption in polymer solar cell. Ag clusters modify the light wave vector and the electromagnetic field inside the device is redistributed and enhanced. As a result, polymer solar cells achieve an overall increase in absorption, short-circuit current density, and power conversion efficiency.  相似文献   

12.
The spectral properties of trivalent erbium ions(Er3+) are systematically studied in a melt-quenched germanate glass(60 GeO2-20PbO-10BaO-10K2O-0.1Ag2O) containing silver(Ag) particles.Thermal treatment of the material leads to the precipitation of Ag particles as observed by transmission electron microscopy and confirmed by absorption spectrum for the obvious surface plasmon resonance peak of Ag particles.The fluorescence from Er3+ in the 10-min-annealed sample with Ag particles is found to be 4.2 times enhanced compared with the unannealed sample excited by 488-nm Ar+ laser.A comparison is made between a spectral study performed on the unannealed Er3+-doped sample and the one annealed for 20 min.The data of absorption cross section and Judd-Ofelt intensity parameters show the agreement between the two samples no matter whether there are Ag particles,indicating that the introduction of Ag particles by post-heat treatment has no effect on the crystal field environment of Er3+ ions.The fluorescence enhancement is attributed to the surface plasmon oscillations of Ag particles in germanate glass.  相似文献   

13.
在P3HT∶PCBM聚合物太阳能电池的阴极LiF/Al中引入纳米结构的银膜组成Ag/LiF/Al复合阴极,太阳能电池的光电流能显著提高。在AM1.5G和100mW.cm-2的模拟太阳光照射下,当银膜厚度为4纳米时,优化的太阳能电池的光电流要比只有LiF/Al的参比太阳能电池高20%以上。研究表明,纳米银膜产生的表面等离子体效应是增强聚合物太阳能电池光电池的主要原因。不过,银膜修饰的太阳能电池填充因子和开路电压要比参考电池低,最终使该类型电池效率降低。在银膜处增加的载流子复合可能是导致电池填充因子、开路电压和能量转化效率降低的重要原因。  相似文献   

14.
In this study, we numerically synthesize a two-dimensional metallic nanostructure consisting of a Au half-space and two separate Ag elliptical cylinders by the simulated annealing (SA) method. The simulated nanostructure is so designed that the surface plasmon polariton (SPP) and the localized surface plasmon (LSP) are simultaneously excited at their common resonant wavelength (535 nm), leading to the enhancement of emission of a nearby dipole source. This enhancement effect is more significant than that of the case where only one of the SPP and LSP is excited. In numerically synthesizing a metallic nanostructure, we try to maximize both the downward emission (in the direction away from the metallic structure) and the emission efficiency. A cost function is defined as some combination of the downward emission and the emission efficiency. We adjust the simulated structure by SA to minimize the cost function at a designated resonant wavelength, and calculate and analyze the spectra of downward emission and emission efficiency for the optimal structure. Other structures are also investigated for comparison. From numerical simulations, it is demonstrated that the enhancement of dipole emission is better for optimization at wavelength 535 nm than at other wavelengths. Note that the downward emission and the emission efficiency can reach maxima almost simultaneously when the SPP and the LSP couple effectively at a common resonant wavelength. This implies that the lighting efficiency of green light-emitting diodes (LEDs) can be increased by the coupling effect at a common resonant wavelength of SPP and LSP.  相似文献   

15.
It is demonstrated that the surface-enhanced Raman scattering (SERS) intensity of R6G molecules adsorbed on a Ag nanoparticle array can be controlled by tuning the size and height of the nanoparticles. A firm Ag nanoparticle array was fabricated on glass substrate by using nanosphere lithography (NSL) combined with reactive ion etching (RIE). Different sizes of Ag nanoparticles were fabricated with seed polystyrene nanospheres ranging from 430 nm to 820 nm in diameter. By depositing different thicknesses of Ag film and lifting off nanospheres from the surface of the substrate, the height of the Ag nanoparticles can be tuned. It is observed that the SERS enhancement factor will increase when the size of the Ag nanoparticles decreases and the deposition thickness of the Ag film increases. An enhancement factor as high as 2×106 can be achieved when the size of the polystyrene nanospheres is 430 nm in diameter and the height of the Ag nanoparticles is 96 nm. By using a confocal Raman mapping technique, we also demonstrate that the intensity of Raman scattering is enhanced due to the local surface plasmon resonance (LSPR) occurring in the Ag nanoparticle array.  相似文献   

16.
The plasmon modes of Ag-nanoshell dimer on metal enhanced fluorescence (MEF) are studied theoretically. The amplified excitation rate of a dimer (two identical Ag nanoshells) illuminated by a plane wave for exciting a molecule located at the gap center is calculated. Subsequently, the apparent quantum yield of the emission of the excited molecule affected by the dimer is investigated. The multiple multipole method is used for the both simulations. Finally, the enhancement factor of the dimer on the overall photoluminescence of the molecule in terms of the two parameters is evaluated. Our results show that Ag-nanoshell dimer is a dual-band photoluminescence enhancer for MEF at the bonding dipole and quadrupole modes. The former is broadband, and the latter narrowband. Both bands depend on the gap size. Moreover, the average enhancement factor of Ag-nanoshell dimer for MEF with a Stokes shift is discussed.  相似文献   

17.
文中从实验和计算两方面报道了在514.5 nm激发光下P-Thiocresol吸附在银胶表面系统的表面增强拉曼散射(SERS).文中分析了它的增强机制,发现增强主要来自于电磁场增强.如果考虑距离为2nm的两个银纳米粒子的耦舍效应,两粒子之间的SERS的电磁场增强为7.16 × 107.静态化学增强亦起到部分增强作用,它的增强倍数为6.所以,总的SERS增强,包括静态化学增强和电磁场增强,是Gtotal=Gsc ×GEM=4.4×108.我们也理论地研究了此系统的表面增强共振拉曼散射(SERRS).当激发光与P-Thiocresol-Ag3系统的激发态共振时,电荷转移机制(化学增强)也将起到重要作用,最强的增强可迭106.我们使用电荷密度将激发光下p-Thlocresol和Ag团簇问的电荷转移结果可视化,这是电荷转移的直接理论证据.对于SERRS增强,包括电荷转移和电磁场增强机制,能达到1013.  相似文献   

18.
Optical and electrical measurements have been made on a new codoped potassium niobate crystal (KNbO3:Fe,Ag) that yields a significant enhancement of the photorefractive and photovoltaic effects when compared with the published results for singly doped potassium niobate crystals. The codoped Ag impurity enters the K site, rather than the typical Nb site, thus changing the local field in the lattice. It is believed that Fe perturbed by the Ag in the K site is responsible for an enhancement of the linear absorption and photocurrent, as well as a probable increase in the effective trap density. An enhanced trap density is likely the cause of the increased photorefractive counterpropagating two-beam coupling efficiency.  相似文献   

19.
杨兴旺  雷新宪 《光谱实验室》2010,27(3):1164-1167
以罗丹明B掺杂的SiO2球为核,通过化学还原的方法制备了二氧化硅/银核壳结构复合纳米粒子。采用透射电镜(TEM)、紫外-可见-近红外(UV-Vis-NIR)分光光度计和荧光分光光度计对二氧化硅/银核壳结构纳米粒子的表面形貌、表面等离子共振和表面荧光增强特性进行了研究和表征。结果表明,二氧化硅/银核壳结构纳米粒子的表面等离子共振峰具有明显的可调谐性,且其表面荧光增强强烈依赖于银壳层的表面等离子共振,随银壳层厚度的增大而增强。  相似文献   

20.
A simple method is demonstrated to detect DNA at low concentrations on the basis of surface‐enhanced Raman scattering (SERS) via polyvinyl alcohol‐protected silver grasslike patterns (PVA‐Ag GPs) grown on the surface of the common Al substrate. By the SERS measurements of sodium citrate and thymine, the PVA‐Ag GPs are shown to be an excellent SERS substrate with good activity, stability and reproducibility. With the use of the tested molecule of thymine, the enhancement factor of the PVA‐Ag GPs is up to ~1.4 × 108. The PVA‐Ag GPs are also shown to be an excellent SERS substrate with good biocompatibility for DNA detection, and the detection limit is down to ~10−5 mg/g. Meanwhile, the assignations of the Raman bands and the adsorption behaviors of the DNA molecules are also analyzed. In this work, the geometry optimization and the wavenumber analysis of adenine–Ag and guanine–Ag complexes for the ground states are performed using density functional theory, B3LYP functional and the LanL2DZ basis set. The transition energies and the oscillator strengths of adenine–Ag and guanine–Ag for the lowest six singlet excited states were calculated by using the time‐dependent density functional theory method with the same functional and basis set. The results show that the charge transfer in the adenine–Ag and guanine–Ag complexes should be the chemical factor for the SERS of the DNA molecules. Lastly, this method may be employed in large‐scale preparation of substrates that have been widely applied in the Raman analysis of DNA because the fabrication process is simple and inexpensive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号