首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of salts on subtilisin crystallization were investigated. Three salts—NaCl, NaNO3 and NaSCN—were selected to study the effects of different anions on growth kinetics of three subtilisin mutants—Properase®, Purafect® and Purafect®OX. The effectiveness of salts in decreasing the solubility of Properase® and Purafect® subtilisin followed the reverse order of the Hofmeister series: SCN>NO3>Cl. The average length and diameter of crystals were measured during crystallization. The nature of salt changed the length/diameter ratio of crystals, indicating the changes in the relative growth rate of different crystal faces. The required supersaturation, (cs)/s, for a given growth rate increased in the order of NaCl, NaNO3 and NaSCN. The observed trend in required supersaturation indicates a kinetic effect and was counter to the trend for the solubility data. A rationale is provided based on the influence of ion binding and kinetics on the energetics of crystal growth and growth rate is correlated to the molar Gibbs free energy of hydration of the anion.  相似文献   

2.
NaBi(WO4)2 (NBW) crystals have been grown for the first time by modified-Bridgman method. Influences of some factors on the crystal growth process are discussed. X-ray powder diffraction experiments show that the unit cell parameters of NBW crystal are a=b=0.5284 nm, c=1.1517 nm, and V=0.3215 nm3. The differential thermal analysis shows that the NBW crystal melts at 923°C.  相似文献   

3.
Nickel-incorporated FeS2 single crystals with various Ni compositions of Fe0.99S2:Ni0.01, Fe0.98S2:Ni0.02, Fe0.96S2:Ni0.04, and Fe0.9S2:Ni0.1 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent. Physical properties of the Ni-incorporated FeS2 single crystals were characterized using X-ray diffraction, Raman spectroscopy, electrical conductivity, and photoconductivity (PC) measurements. By means of the analyses of the X-ray diffraction patterns, the whole series of Ni-doped FeS2 single crystals were determined to be single-phase and isostructural. Raman spectroscopy of the Ni-doped FeS2 crystals was carried out at room temperature. Raman resonant peaks of the Ni-doped FeS2 crystals demonstrate an energy red-shift behavior with respect to the increase of the dopant densities. Conductivity measurements show the resistivity of the Ni-doped FeS2 decreased as the doping concentration of Ni is increased. Nickel is an n-type dopant, which behaves like a donor level existed near the conduction band edge of the synthetic FeS2. On the other hand, dopant effect of nickel on the synthetic FeS2 also destroys the photoconductive sensitivity in the photoconductivity measurements.  相似文献   

4.
We report (1 1 1), (1 1 0) and (1 0 0) growth of CaF2 by the vertical Bridgman method. Crystals up to 250 mm diameter were grown and various growth parameters such as growth rate, temperature gradient and post-growth cooling rate were studied. It was found that the growth rate and the cooling rate are slower for the larger diameter crystals with a fixed temperature gradient. These growth parameters were optimized for growing the crystals along specific orientation after realizing that CaF2 has a tendency to grow along an orientation close to 1 1 0. Degradation in optical transmittance was evaluated by irradiating the crystal to γ-rays up to a dose of 105 rad. Optimized scavenger addition resulted in crystals with better radiation resistance and excellent VUV transmittance.  相似文献   

5.
Interconnecting cage-like porous structures of several halide compounds were prepared by the selective leaching of one eutectic phase method. The binary eutectic precursors were prepared by directional solidification using the Bridgman crystal growth technique. Porous NaMgF3 (40% pore volume), CaF2 (57% pore volume) and BaF2 (43% pore volume) crystals were obtained after water leaching the NaF component of the directionally solidified NaF/NaMgF3, NaF/CaF2 and NaF/BaF2 eutectics with the appropriate entangled microstructure. The growth conditions for eutectic-coupled growth and the morphology of the eutectics have been determined. In the coupled growth regime, the size of the eutectic phases “λ” is fairly uniform and varies with the eutectic growth rate “v” as λ2v=constant, which allows us to control the pore size within the 0.5–10 μm range. The simplicity and versatility of the eutectic growth also allows us to fabricate highly aligned porous structures at relatively high production rates.  相似文献   

6.
Germanium (1 1 1)-oriented crystals have been grown by the vertical Bridgman technique, in both detached and attached configurations. Microstructural characterization of these crystals has been performed using synchrotron white beam X-ray topography (SWBXT) and double axis X-ray diffraction. Dislocation densities were measured from X-ray topographs obtained using the reflection geometry. For detached-grown crystals, the dislocation density is on the order of 104 cm−2 in the seed region, and decreases in the direction of growth to less than 103 cm−2, and in some crystals reaches less than 102 cm−2. For crystals grown in the attached configuration, dislocation densities were on the order of 104 cm−2 in the middle of the crystals, increasing to greater than 105 cm−2 near the edge. The measured dislocation densities are in excellent agreement with etch pit density (EPD) results. Broadening and splitting of the rocking curve linewidths was observed in the vicinity of subgrain boundaries identified by X-ray topography in some of the attached-grown crystal wafers. The spatial distribution of rocking curve linewidths across the wafers corresponds to the spatial distribution of defect densities measured in the X-ray topographs and EPD micrographs.  相似文献   

7.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

8.
Single crystals of PbMg1/3Ta2/3O3 (PMT) were grown by the flux method. The PbO–Pb3O4–B2O3 system was used as a solvent. Transparent and light yellow PMT single crystals of rectangular shape and dimensions up to 10×6×4 mm3 were obtained. For the applied growth conditions only, the crystals of the perovskite structure were grown. X-ray diffraction tests showed that at room temperature PMT exhibits cubic symmetry with lattice parameter a=4.042(1) Å. Dielectric studies pointed to relaxor properties of PMT. The characteristic broad and frequency-dependent maximum of dielectric permittivity was observed at 179.7 K (1 kHz).  相似文献   

9.
Uta Helbig   《Journal of Crystal Growth》2008,310(11):2863-2870
The growth of calcium carbonate crystals has attracted growing attention as a model system for biomineralisation processes. Organic molecules and gelatinous matrices are known to play an essential role in the formation of hard tissues. For the investigation of the function of specific influence factors, a model experiment is necessary. Several hydrogels were previously tested as growth matrices for calcium carbonate.

For laboratory experiments, a double diffusion set-up for the growth of crystals in gels was established earlier. Calcium carbonate crystals were grown in polyacrylamide hydrogels.

Here the influence of the polymer content in the hydrogels on the crystallisation behaviour is reported. Time-resolved and spatially resolved crystallisation experiments were conducted. The collected calcium carbonate precipitates were analysed by light microscopy, scanning electron microscopy and X-ray diffraction.

The morphology of the developing crystals was found to be dependent on the polymer content of the hydrogels.  相似文献   


10.
We found Oxygen-doped GaAs crystals to be suitable materials for CO2 laser optical component preparation, with application at 10.6 μm. An optical transmission of 55% in the IR spectrum range, between 2 and 15 μm has been reached for such a GaAs type material. The GaAs crystals that we have analysed were grown by two procedures: Horizontal Bridgman (HB) and Liquid Encapsulated Czochralski (LEC). The HB method has been used for obtaining pure (undoped) crystals, while the oxygen-doped GaAs ingots were grown by LEC technique. The two types of samples processed in the same manner as regards mechanical polishing and chemical etching, which were investigated by Hall measurements, optical transmission spectrometry and elastic recoil detection analysis (ERDA) technique. The GaAs:O (LEC) has near semi-insulating properties as can be observed from the results of the electrical resistivity and Hall effect measurements. The ERDA spectrum shows an intense signal of oxygen in the bulk of GaAs:O (LEC) crystals, while the oxygen signal is not present in the ERDA spectrum of the undoped GaAs (HB). We consider that these results could recommend the ERDA technique as a possible qualitative and quantitative analysis in an ion-beam accelerator for oxygen content in oxygen-doped GaAs crystals. The analysis is not sensitive to the native oxide, as could be seen by measuring GaAs (HB) undoped crystals.  相似文献   

11.
Single crystals of ruby have been obtained from fluxed melts based on the systems Li2O–MoO3, Li2O–WO3, Na2O–WO3, 2PbO–3V2O5, PbO–V2O5–WO3, PbF2–Bi2O3 and Na3AlF6 by both the TSSG method and spontaneous crystallization at the temperatures 1330–900 °C. Al2O3 solubility has been measured for the flux composition of 2Bi2O3–5PbF2 in the temperature range 1200–1000 °C and dissolution enthalpy has been defined as 29.4 KJ/Mol. The composition of grown crystals was studied by electron microprobe analysis. The synthetic ruby contains from 0.51 to 6.38 at% of chromium admixture depending on the crystal growth conditions. Experimental results on growth conditions, composition and morphology of grown crystals are presented for each flux and temperature interval.  相似文献   

12.
Single crystals of Ba2HoRu1−xCuxO6 have been grown from high temperature solutions using PbO–PbF2 as solvent in the temperature range 1150–1250 °C. Crystals with a six sided plate like morphology measuring up to 3 mm across and 0.5 mm thick and polyhedral habit measuring up to 2 and 1 mm in thick mass were obtained. Powder X-ray diffraction patterns obtained on the crystals were indexed to give a monoclinic space group P21/n with lattice parameters a=5.875(2), b=5.874(3), c=8.960(1) and β=89.995(2)°. The crystals with x=0 show a single anomaly at 6.5 K corresponding to an antiferromagnetic phase with . The crystals containing Cu show additional anomalies at 18 and 48 K. The SEM and EDS analysis reveals a 2116 phase.  相似文献   

13.
The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2–CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer–Emmett–Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PTx conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH)2.

Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area (SBET=6–10 m2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.  相似文献   


14.
A mercury indium telluride (MIT) ingot was grown by the vertical Bridgman method. The defects in MIT crystals were characterized by the chemical etching method. A defect etchant for MIT crystals was developed. The etch pits of dislocations, microcracks and boundary was observed by scanning electron microscopy. It was elucidated that the etch pits density of dislocations of MIT wafers was about 4×105 cm−2. Te and In reduced at the grain boundaries, but were homogeneously distributed within the grains in the as-grown MIT crystals. The distribution of In in MIT crystals along the growth direction and radial direction was analyzed by electronic probe microscopy. It was found that In concentration was higher in the initial part and lower in the final part of the MIT ingot, which indicated that the segregation coefficient of In in MIT crystals was 1.15. The radial In concentration increased from the center to edge of the wafers and homogeneous in the middle part.  相似文献   

15.
Single crystals of BPO4 with sizes up to 15×10×12 mm3 were grown by top-seeded solution growth method using Li2O–Li4P2O7 as fluxes. The components volatilized from the melt were characterized by the method of X-ray powder diffraction. The defects of grown crystals have also been investigated. The measured ultraviolet cutoff edge of BPO4 was about 130 nm. Its density was 2.82 g/cm3 determined using drainage method.  相似文献   

16.
Transparent Na modified potassium lithium niobate (Na0.23K2.60Li1.82Nb5.35O15.70; NKLN) crystal was successively grown by the Czochralski method using RF induction heating from melt composition Na2O:K2O : Li2O:Nb2O5=2:30:25:43 mol%. NKLN crystal showed a tetragonal tungsten bronze structure with lattice constants a=12.5446±0.0010 Å and c=4.0129±0.0005 Å at room temperature. The dielectric constant along the c-axis ε33 showed a sharp maximum around 480 °C. Optical transmission edge was 370 nm and optical transmission spectra showed no absorption at wavelengths ranging from 380 to 800 nm. The structural and optical properties of NKLN were similar to those of the near stoichiometric KLN crystals. We believe that the growth of NKLN by the Czochralski method has an advantage for a large size and high-quality crystal.  相似文献   

17.
Strontium titanate single crystals 15–20 mm in diameter and 40–80 mm in length were grown by a floating zone method with radiation heating. Additional crystal heating just below the molten zone by an in-growth annealing furnace was applied in order to lower the temperature gradients and to achieve slower cooling of the grown crystal. The crystal perfection was studied with X-ray topography and double-crystal diffractometry. The most perfect crystals were grown in [0 0 1] direction with single grain rocking curve widths of about 30″ and subgrain misorientations of 1′–3′ over 10×10 mm2 areas of the boule cross-section for both (0 0 1)-, (1 1 0)- and (1 1 1)-oriented slices. Such high-quality crystal can be grown reproducibly with starting materials of 4N grade quality.  相似文献   

18.
Thiourea-doped Triglycine sulphate (ThTGS) crystal with three different concentrations of thiourea was grown from aqueous solution by slow cooling technique. The cell parameters were determined from powder X-ray diffraction analysis. A qualitative analysis of the presence of thiourea in doped crystals was estimated by FTIR analysis. Microhardness studies were carried out using Leitz Weitzler hardness tester at room temperature. Dielectric properties of the crystals were studied which showed a shift in the Tc when compared to pure TGS crystal. Pyroelectric studies were carried out and the pyroelectric coefficient was found. Piezoelectric studies (d33 coefficient) has also been carried out.  相似文献   

19.
Er3+-doped and Er3+–Yb3+ co-doped yttrium aluminum borate (YAB) single crystals have been grown by the top-seeded solution growth method using a new flux system, namely NaF–MoO3–B2O3. The Er3+ concentrations were 1.3 mol% for both single doped and co-doped crystals and the Yb3+ concentration in the Er3+–Yb3+ co-doped crystal was 20.0 mol% in the raw materials. The distribution coefficients of Er3+ single doped and Er3+–Yb3+ co-doped crystals were measured. The polarized absorption and fluorescence spectra of Er3+–Yb3+ co-doped crystal were recorded and compared with those of Er3+ single doped crystal. The results demonstrate that Er3+–Yb3+ co-doped YAB crystal is a potential candidate for 1.55 μm laser materials.  相似文献   

20.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were grown by the Czochralski method. The effective segregation coefficients of Ca, Ba, Na elements in CBN-28 crystal growth were measured, and the rocking curve from 0 0 2 reflection of CBN-28 wafer was also measured by the high-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was measured to be 70.6″. The measured dependence of dielectric constants on temperature showed the Curie temperature of the CBN-28 crystals is between 246.8 and 260 °C. Typical polarization–electric field (PE) hysteresis loops were measured at room temperature. Ferroelectric 180° domains were observed by scanning electron microscopy (SEM) on the etched (0 0 1) surface of the CBN-28 crystals. The transmittance of [0 0 1]-oriented CBN-28 crystals was measured and the result shows that optical properties of CBN-28 crystal are almost the same as those of SBN for wavelengths between 2500 and 7500 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号