首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of optically active P‐chiral oligophosphines (S,R,R,S)‐ 2 , (S,R,S,S,R,S)‐ 3 , (S,R,S,R,R,S,R,S)‐ 4 , and (S,R,S,R,S,R,R,S,R,S,R,S)‐ 5 with four, six, eight, and 12 chiral phosphorus atoms, respectively, were successfully synthesized by a step‐by‐step oxidative‐coupling reaction from (S,S)‐ 1 . The corresponding optically inactive oligophosphines 1′ – 5′ were also prepared. Their properties were characterized by DSC, XRD, and optical‐rotation analyses. While optically active bisphosphine (S,S)‐ 1 and tetraphosphine (S,R,R,S)‐ 2 behaved as small molecules, octaphosphine (S,R,S,R,R,S,R,S)‐ 4 and dodecaphosphine (S,R,S,R,S,R,R,S,R,S,R,S)‐ 5 exhibited the features of a polymer. Furthermore, DSC and XRD analyses showed that hexaphosphine (S,R,S,S,R,S)‐ 3 is an intermediate between a small molecule and a polymer. Comparison of optically active oligophosphines 1 – 5 with the corresponding optically inactive oligophosphines 1′ – 5′ revealed that the optically active phosphines have higher crystallinity than the optically inactive counterparts. It is considered that the properties of oligophosphines depend on the enantiomeric purity as well as the oligomer chain length.  相似文献   

2.
The construction of new or novelly functionalized annulated and bridged tricylic compounds by two consecutive C,C-bond formations (a and b in la , Scheme 1) is described. In a first step, chloroalkyl-substituted aminonitriles yielded pyrrolidines 8 , 15a , 15b , 23 , 25 and piperidine 18 by carbanionic ring closure (Schemes 5, 6, 7 and 8). Subsequent Friedel-Crafts cyclization transformed the β-aminonitriles 8 , 15a , 15b , and 18 either directly or via their carboxylic acid derivatives to the indeno [1, 2-c]pyrrole, 2, 5-methano-3-benzazocine, benz [f]isoindoline and 1, 4-ethano-2-benzazapine skeletons 11 , 16a , 16b and 21 , respectively (Schemes 5, 6 and 7). By classical ring expansion reactions the pyrrolo [3, 4-c]isoquinoline and benzopyrano-[3, 4-c]pyrrole skeletons 28 resp. 31 were obtained from 11 (Scheme 9).  相似文献   

3.
(Z)-2-Butenyl-dimethoxyborane adds smoothly to propanal and benzaldehyde to afford the homoallyl alcohols (R*,R*)- 1 and (R*,R*)- 2 , In contrast (E)-2-butenyl-dimethoxyborane leads to adducts having the (R*,S*)-configuration. Dimethoxy-(Z)-2-pentenylborane, dimethoxy-(Z)-(2-methyl-2-butenyl)borane and (2Z,4E)-or (2E,4Z)hexadienyl-dimethoxyborane, treated with propanal, give (R*,R*)- 3 , (R*,R*)- 4 , (E),(R*,S*)- 5 and (Z),(R*, R*)- 5 , respectively. A transition state model implying a pericyclic electron motion is in perfect agreement with the regio- and stereoselective outcome of these borane reactions.  相似文献   

4.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

5.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   

6.
Reactivity of 2-hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carbaldehyde (I) towards N- and C-nucleophiles was described. A series of new enaminones II–III, Schiff’s base IV, and hydrazinomethylenediketones V–VIII and X were prepared in good yields. Cyclization of compounds X was achieved by an action of acetic acid to give pyrazolo[3,4-d]pyrido[1,2-a]pyrimidines XI. Base catalyzed Knoevenagel condensation of aldehyde I with some active methyl and methylene compounds led to a series of chalcone-like derivatives XII, XV, XVII, XX, XXIII, XXV, XXVII, XXIX, XXXI, XXXII, and XXXV, in fair yields. Cyclization of enones XII, XV, and XX with hydrazine gave novel heterocyclyl substituted pyrazoles XIII, XVII, and XXI, respectively. Pyrano[2,3-d]pyrido[1,2-a]pyrimidine-2,5-diones XXXIII, XXXIV, and XXXVI derivatives were obtained via cyclization of their respective enone derivatives.  相似文献   

7.
N-o-, -m-, and -p-carboxyphenyl-D-glucosylamines and N-o-, -m-, and -p-hydroxyphenyl-D-glucosylamines were synthesized by reaction of D-glucose with o-, m-, and p-aminobenzoic acids and o-, m-, and p-aminophenols. It was demonstrated that both - and -anomers were formed by N-glycosylation of o-, m-, and p-aminobenzoic acids; only -anomers, by N-glycosylation of o-, m-, and p-aminophenols.  相似文献   

8.
A modified Gaussian function g(u, v, w, a, R ) = const s(a, R ) is considered where l = u + v + w, s (a, R ) is a 1s-type Gaussian function centered at R , a is the coefficient in the exponent of the 1 s Gaussian function and X, Y, Z are components of R . General formulae are derived for overlap integrals, kinetic energy integrals, nuclear attraction integrals, and electron repulsion integrals, valid for any l. The formulae are much simpler than those derived by Huzinaga for Cartesian Gaussian functions.  相似文献   

9.
New Phellandrene Derivatives from the Root Oil of Angelica archangelica L . 2-Nitro-1,5-p-menthadiene ( 5 ), trans- and cis-6-nitro-1(7), 2-p-menthadiene ( 6 and 7 ), trans-1(7), 5-p-menthadien-2-yl acetate ( 9 ) and a formal phellandrene derivative, 7-isopropyl-5-methyl-5-bicyclo [2.2.2]octen-2-one ( 16 ), have been identified in the root oil of Angelica archangelica L . Starting from (?)-(R)-α-phellandrene ( 1 ) (R)- 5 , (4R, 6S)- 6 /(4R, 6R)- 7 , (2S, 4R)- 9 and (1R, 4R, 7R)- 16 as well as (2S, 4R)- 11 , (2R, 4R)- 12 and (2R, 4R)- 10 have been prepared.  相似文献   

10.
A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.  相似文献   

11.
The glow curve deconvolution (GCD) analysis of a composite thermoluminescence (TL) glow curve into its individual glow-peaks needs appropriate equations describing a single glow peak. In the present work, new single glow peak equations are presented, which are produced by transformation of the I(n 0,E,s,T) and I(n 0,E,s,b,T) single glow-peak equations into I(I m,T m,E,T) and I(I m,T m,E,b,T), respectively. Moreover, equations of the forms I(I m,T m,w,b,T) are also introduced. The proposed equations have two basic advantages: (1) they use parameters, which are directly obtained from the experimental glow peaks and (2) their accuracy is equal to that of the original thermoluminescence single glow-peak equations.  相似文献   

12.
A new coumarin diester has been isolated from Polygala paniculata L. (Polygalaceae) by a combination of flash chromatography on silica gel and preparative reversed-phase chromatography. Its structure has been determined as 3′-O-acetyl-4′-O-benzoylkhellactone (= 9-acetoxy-9,10-dihydro-8,8-dimethyl-2-oxo-2 H,8H-benzo[1,2-b:3,4-b′]dipyranh-10-yl benzoate) by spectroscopic methods (UV, IR, 1H-NMR, EI-and CI-MS) and by X-ray analysis.  相似文献   

13.
Karpoxanthin (=(all-E,3S,5R,6R,3′R)-5,6-dihydro-β,β-carotene-3,5,6,3′-tetrol; 7 ), 6-epikarpoxanthin (=(all-E,3S,5R,6S,3′R)-5,6-dihydro-β,β-carotene-3,5,6,3′-tetrol; 4 ), 5-epikarpoxanthin (=(all-E,3S,5S,6R,3′-R)-5,6-dihydro-β,β-carotene-3,5,6,3′-tetrol; 11 ), cucurbitaxanthin A (=(all-E,3S,5R,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol; 10 ), epicucurbitaxanthin A (=(all-E-3S,5S,6R,3′R)-3,6-epoxy-5,6-dihydro-β,β-carotene-5,3′-diol; 14 ), and the corresponding mutatoxanthin epimers 8 , 9 , 12 , and 13 were prepared in crystalline state by the acid-catalyzed hydrolysis of (3S,5R,6S,3′R)- and (3S,5S,6R,3′R)-antheraxanthin ( 5 and 6 , resp.) and characterized by their UV/VIS, CD, 1H- and 13C-NMR, and mass spectra.  相似文献   

14.
Syntheses of Enantiomerically Pure Violaxanthins and Related Compounds The epoxides 16 and ent- 16 , prepared by Sharpless-Katsuki oxidation of 15 in excellent yield and very high enantiomeric purity, were used as synthons for the preparation of (+)-(S)-didehydrovomifoliol (45) , (+)-(6S, 7E, 9E)-abscisic ester 46 , (+)-(6S, 7E, 9Z)-abscsic ester 47 , (?)-(3S, 7E, 9E)-xanthoxin (49) , (?)-(3R, 7E, 9E)-xanthoxin (50) , (3S, 5R, 6S, 3′S,5′R, 6′S, all-E)-violaxanthin (1) (3R, 5R,6S,3′R,5′R,6′S, all-E)-violaxanthin (55) and their (9Z) (see 53 , 57 ), (13Z) (see 54 , 58 ), and (15Z) (see 60 ) isomers. The novel violadione ( 61 ) was prepared from 1 by oxidation with DMSO/Ac2O. By base treatment, 61 was converted into violadienedione (62) , a potential precursor of carotenoids with phenolic end groups.  相似文献   

15.
The Pseudomonas species lipase inhibition shows enantioselectivity for R‐enantiomer over S‐enantiomer of exo‐2‐norbornyl‐Nn‐butylcarbamates. R‐, S‐, and racemic‐exo‐2‐norbornyl‐Nn‐butylcarbamates are all characterized as pseudo substrate inhibitors of the enzyme. Thus, the mechanism for Pseudomonas species lipase‐catalyzed hydrolysis of the inhibitor is formation of the first enzyme‐inhibitor Michaelis complex via nucleophilic attack of the active site serine to the inhibitor (Ki step) then formation of the butylcarbamyl enzyme intermediate from this complex (k2 step). Comparison of bimolecular rate constants (ki = k2 / Ki) of the inhibitors indicates that R‐enantiomer is 1.8 times more potent than S‐enantiomer. Thus, Pseudomonas species lipase shows enantioselectivity of 1.8 for Rexo‐2‐norbornyl‐Nn‐butyl‐carbamate over Sexo‐2‐norbornyl‐Nn‐butylcarbamate. Protein‐ligand interaction studies on both enantiomers of exo‐2‐norbornyl‐Nn‐butylcarbamate as inhibitors of Pseudomonas species lipase using AutoDock suggest that R‐enantiomer binds more tightly into the active site of the enzyme than S‐enantiomer. The norbornyl ring of Sexo‐2‐norbornyl‐Nn‐butylcarbamate is repulsive to Ser 82 and His 251 of the catalytic triad as well as to Met 16 of the oxyanion hole. These repulsions may create few unfavorable interactions between Sexo‐2‐norbornyl‐Nn‐butylcarbamate and the enzyme and make this inhibitor a less potent one.  相似文献   

16.
The Friedel-Crafts mono and double acylations of trans-μ-[(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η:C,6,7,C-η-(2,3,6,7-tetramethylidenebicyclo[3.2.1]octane)]bis(tricarbonyliron) ( 4 ) are highly stereoselective and yield trans-μ-{(1RS,2RS,3SR,5RS,6SR,7RS)-C,2,3,C-η :C,6,7,C-η-[(Z)-1-(3,6,7-trimethylidenebicyclo[3.2.1]-oct-2-ylidene)-2-propanone]}bis(tricarbonyliron) ( 5 ) and trans-μ-{(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η :C,6,7,C-η-[(Z,Z)-1,1′-(3,7-dimethylidenebicyclo [3.2.1] octane-2,6-diylidene)di(2-propanone)]}bis(tricarbonyliron) ( 6 ) whose structure has been established by single-crystal X-ray diffraction.  相似文献   

17.
A toroidal polyhex H(p, q, t) is a cubic bipartite graph embedded on the torus such that each face is a hexagon, which can be described by a string (p, q, t) of three integers (p≥ 1, q≥ 1, 0≤ tp−1). A set of mutually disjoint hexagons of H(p, q, t) is called a resonant pattern if H(p, q, t) has a prefect matching M such that all haxgons in are M-alternating. A toroidal polyhex H(p, q, t) is k-resonant if any i (1 ≤ ik) mutually disjoint hexagons form a resonant pattern. In [16], Shiu, Lam and Zhang characterized 1, 2 and 3-resonant toroidal polyhexes H(p, q, t) for min(p, q)≥ 2. In this paper, we characterize k-resonant toroidal polyhexes H(p, 1, t). Furthermore, we show that a toroidal polyhex H(p, q, t) is k-resonant (k≥ 3) if and only if it is 3-resonant.   相似文献   

18.
Two trans stereoisomers of 3‐methylcyclopentadecanol (=muscol), (1R,3R)‐ 2 and (1S,3S)‐ 2 , were efficiently synthesized from (3RS)‐3‐methylcyclopentadecanone (=muscone; (3RS)‐ 1 ) by a highly stereoselective reduction (Scheme). L‐Selectride® (=lithium tri(sec‐butyl)borohydride) was used, followed by the enantiomer resolution by lipase QLG (Alcaligenes sp.). The cis stereoisomers of muscol, (1S,3R)‐ 2 and (1R,3S)‐ 2 , were obtained by the Mitsunobu inversion of (1R,3R)‐ 2 and (1S,3S)‐ 2 , respectively (Scheme). The absolute configuration of (1R,3R)‐ 2 was determined by X‐ray crystal‐structure analysis of its 3‐nitrophthalic acid monoester, 2‐[(1R,3R)‐3‐methylcyclopentadecyl hydrogen benzene‐1,2‐dicarboxylate ((1R,3R)‐ 3b ), and by oxidation of (1R,3R)‐ 2 to (3R)‐muscone.  相似文献   

19.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

20.
The thermally stimulated current (TSC) technique has been used to investigate three anionic polystyrenes of M?n 17,000, 71,700, and 1.55 × 106, i.e., M < Mc, M > Mc, and M ? Mc, where Mc is the entanglement molecular weight. A current maximum near Tg designated TMg, has relaxation times which follow an Arrhenius equation. A second current maximum at T > Tg appears to be the Tll process and is designated TMll. Relaxation times for it follow a Vogel equation. TMg and TMll vary with molecular weight, increasing below Mc and leveling off above Mc at a temperature of about 170°C. Values of TMg and TMll are compared with values of Tg and Tll obtained from torsional braid analysis, which involves melt flow; and with differential-scanning-calorimetric values on fused films, where there is no transport of polymer. It is concluded from such cross-comparisons that TSC, at least for polystyrene, is a quasistatic test which may involve microscopic viscosity. Macroscopic viscosity does not play a role. The ratio TMll/TMg is in the range 1.10–1.16, similar to Tll/Tg values by other methods. A few comments about Tll in atactic poly(methyl methacrylate) by the TSC method are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号