首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
桥梁受移动荷载动力响应的一种精细积分法   总被引:5,自引:0,他引:5  
迄今为止,精细积分法都是应用于荷载作用位置固定不变的问题。本文将精细积分法推广到荷载作用点位置随时间而变化的情形,按有限元方法计算了桥梁受移动荷载作用时的动力响应,并与常规的Newmark方法、解析解做了比较。数值结果表明,精细积分法按本文的策略推广后,计算精度和效率均比通常的数值积分方法得到显著的提高。  相似文献   

2.
并行子结构法求解结构动力响应   总被引:2,自引:0,他引:2  
李强  邹经湘 《力学季刊》1997,18(4):267-272
本文利用直接积分法结合子结构技术和并行机特点提出一个求解复杂系统动响应的并行子结构动响应法。该方法利用子结构连接条件找到内力传递向量,从而确定各子结构动响应,算例表明该方法是有效的,并且具有较高的并行效率。  相似文献   

3.
计算结构动力响应的分段精细时程积分方法   总被引:2,自引:0,他引:2  
王超  李红云等 《计算力学学报》2003,20(2):175-178203
利用钟万勰等发展的精细时程积分方法,提出了解线性定常结构动力系统响应的分段精细进程积分方法,它能适用于各种激励作用下系统的动力响应。对于载荷项采用线性和两次多项式进行拟合,采用精细时程积分方法和叠代方法对动力响应进行计算,与传统的离散积分方法如纽马克方法和威尔逊方法等及状态方程直接积分方法进行数值比较,本方法具有很高的精度和计算效率。  相似文献   

4.
结构动力方程的精细与差分耦合时程积分法   总被引:3,自引:0,他引:3  
提出一种将精细积分法与Newmark-β法耦合起来的结构动力学时程积分方法.该方法通过引入Newmark-β法的基本假设,将加速度分量从动力学方程中消去,动力学方程由二阶常微分方程组变为一阶常微分方程组,然后再用精细积分法进行逐步积分.与直接应用精细积分法相比,方程的个数可以减少一半.该文对这种方法进行了理论推导和算例验证,表明了该方法在结构动力分析中的有效性.  相似文献   

5.
提出了一种新的精细时程积分法来求解大型动力系统.结合Krylov子空间法、培德级数近似以及一般载荷的维数扩展法,进一步提高精细时程积分法的计算效率.利用维数扩展法避免计算微分方程特解,并可处理任意载荷.对于大型动力系统,通过Krylov子空间的降维分析将问题转化到一个子空间,计算效率得到极大提高.对于迭代次数N的选择作了详细讨论,进一步提高了计算效率.  相似文献   

6.
任意激励下结构动力响应的状态方程精细积分法   总被引:6,自引:1,他引:6  
王忠  王雅琳等 《计算力学学报》2002,19(4):419-422449
对只有弹性模态以及除此之外还有刚体模态的结构的瞬态响应给出了精细积分的通用公式,从而使得该方法不仅可以处理线性激励的情形,而且对激励是多项式形式或可以展开成多项式的激励也同样能够计算。对于非线性激励,只要可以用关于自变量的级数形式来近似表示,都可以用本文所给的方法进行计算,计算的精度可以通过变化级数的项数来调整。  相似文献   

7.
结构非线性动力方程的精细积分算法   总被引:16,自引:0,他引:16  
基于线性方程精细积分的思路,对具有惯性、阻尼、刚度非线性的动力方程及参变非线性动力方程提出了一种较高精度线性化精细积分迭代计算算法,算例表明该算法可用较大的步长取得满意的计算精度,并可在较大的线性化区间获得较高的计算精度。  相似文献   

8.
计算结构动力响应的状态方程直接积分法   总被引:31,自引:9,他引:22  
利用钟万勰等发展的指数矩阵精细算法,提出了状态方程直接积分法。它能适用于确定情形各种激励作用下系统的动力响应分析;与分段等效线性化方法相结合,也可用于某些非线性系统的响应计算。算例表明,状态方程直接法具有精度高、不受时间步长的严格限制等特点。  相似文献   

9.
精细时程积分法的参数选择   总被引:5,自引:0,他引:5  
讨论了精细时程积分法中离散间隔τ、截断阶数M和二分阶数N的优化问题。指出τ应满足采样定理,如不满足必须加滤波器以抑制频混。通过理论推导和大量的数值试验证明了M=4是优选的,并给出了N的简单选择公式。用两个实例验证了M,N选择的可靠性,并指出误差随时间线线累积。  相似文献   

10.
结构动力方程的样条精细积分法   总被引:1,自引:2,他引:1  
结合精细积分法和样条函数拟合技术的优点,提出了求解结构动力方程的一种有效方法.首先对非齐次项用三次正规化B样条函数进行拟合,然后利用正规化B样条函数形状相同、仅相差一个平移量的特点,构造了一个高效的特解求解方法.按此方法只需求出一个标准B样条项所对应的特解,然后通过时间坐标的平移并结合叠加原理,即可求出任意时刻的特解值.由于特解计算中采用数值积分的方法,避免了矩阵求逆,因而本方法具有较大的适用范围.算例结果证明了该方法的有效性.  相似文献   

11.
结构动态载荷识别的精细逐步积分法   总被引:13,自引:3,他引:13  
对比例阻尼系统给出了基于精细逐步积分法的动态载荷识别方法。首先将系统进行模态坐标变换得到无耦合运动方程 ,然后应用精细逐步积分法构造一种高效精确的载荷识别公式 ,再由量测到的结构动态响应求出动态力的时间历程。数值算例验证了本方法的识别精度是好的  相似文献   

12.
飞行物体受瞬态荷载作用的精细逐步积分   总被引:1,自引:1,他引:1  
当前的精细逐步积分方法不能直接处理具有刚体自由度结构的瞬态响应计算。本文就此提出了应对策略,仍然可用较大的步长而获得精确解答。  相似文献   

13.
基于Muszynska密封力模型,建立了迷宫密封转子系统的非线性动力学模型,将精细积分法推广应用于非线性情况,计算了迷宫密封不平衡转子系统的动力学特性,依据Floquet理论讨论其分岔特性。研究表明:在2^N类算法计算指数矩阵基础上提出的精细积分法和传统的数值计算方法相比,其精度高,在分析中通过取不同步长计算对比,表明该方法在某些情况下可以采取较大时间步长,有效提高了计算速度。  相似文献   

14.
捷联惯导系统的精度是导航的关键.传统的捷联惯导算法受惯性传感器更新速率限制,其精度和实时性在高动态下受到极大影响.在研究传统捷联惯导算法的基础上,建立了统一的捷联惯导微分方程,并提出了基于一次采样的四阶龙格库塔捷联算法,降低了惯性器件采样频率对捷联解算周期的限制.利用设计的基于DSP的半物理仿真系统验证表明,该算法能有效满足高动态下捷联惯导算法的实时性要求,定位精度提高约1倍,具有重要的工程应用价值.  相似文献   

15.
齐次扩容精细算法   总被引:12,自引:3,他引:9  
钟万勰院士创立的线性定常系统的精细算法HPD具有非常重要的工程实用价值。对于非齐次线性定常系统,钟构造了在一个积分步长内将激励项线性化的处理方法LHPD,Lin^[3]等通过Fourier级数展开和寻找有解析形式的特解的方法,构造了HPD-F算法,这两种算法有一个共同点,即算法的实现需要求解系统矩阵及相关长阵的逆矩阵,数学上,也即隐含要求系统的矩阵及其相关矩阵非奇异,这样,就产生以下两个问题:1.当系统矩阵及其相关矩阵奇异时,如何设计这类动力响应问题的精细格式?2.算法的实现,需要设计高精度的矩阵求逆算法,而矩阵求逆的工作量是奶大的.本文借助齐次扩容技巧,设计了求解非齐次线性定常系统的一类新的精细算法-齐次扩容精细算法HHPD。该算法不涉及矩阵求逆运算,有效地解决 上述两个问题,并且具有设计合理,易于实现等特点,本文最后就几个典型算例,应用齐次扩容精细算法求解,与文献相比,数值结果更为理想。  相似文献   

16.
基于位移型Gurtin变分原理计算动力响应的逐步积分法   总被引:8,自引:0,他引:8  
本文利用位移型Gurtin变分原理,在时间域上采用三次Hermite插值函数进行离散,给出了一种计算结构动力响应的逐步积分方法。通过稳定性分析研究了该方法的稳定区情况表明,当1.64≤θ≤2.08时,该方法的数值计算精度很高,但是条件稳定积分格式。当θ≥4.1时,该方法是无条件稳定的积分格式,精度较高。  相似文献   

17.
大规模并行结构动力分析分层计算方法   总被引:1,自引:1,他引:0  
多核分布式存储超级计算机的兴起为大规模并行结构动力分析提供了强有力的计算工具。根据多核分布式计算环境的特点,提出了一种大规模并行结构动力分析分层计算方法。该方法在传统隐式动力分析的区域分解法的基础上,利用两级分区和两次缩聚策略进行求解。不但通过进一步缩减求解问题规模有效提高了界面方程的收敛速度,而且通过三层并行计算有效提高了通信效率。该方法并不对有限元模型引入近似,属于精确的动力子区域分层计算方法。典型数值算例表明,该方法计算精度与商业软件ANSYS完全法求解精度相当;同传统区域分解法相比,该方法能够获得较高的并行计算性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号