首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
吴中  张新波 《电化学》2015,21(6):554
以氧化石墨、间苯二酚、甲醛和泡沫镍为原料,经85 oC水热碳化处理,在泡沫镍表面原位聚合形成了碳凝胶/泡沫镍一体化电极,冷冻干燥处理后可得多孔碳凝胶/泡沫镍一体化电极. 水系和有机系的超级电容器测试表明,多孔碳凝胶/泡沫镍一体化电极具有较高的比容量和良好的循环稳定性,其独特的一体化电极组成和多孔结构有利于电子和电解液离子的有效传输.  相似文献   

3.
Binderless carbon nanotubes aerogel (CNAG) composites represent a new class of high-performing electrodes for energy storage applications such as electrochemical double layer capacitors. The composites developed here differ significantly from these previously prepared with dispersion processes. The CNAG material was prepared by a molding procedure that is the synthesis by a chemical vapor deposition method to grow carbon nanotubes directly onto a microfibrous carbon paper substrate. Then the carbon aerogel is synthesized on the carbon nanotubes. The key feature of the method is eliminating the need of controlling the carbon nanotube concentration, which permits optimized dispersion processes to reinforce the aerogel's networks. The CNAG electrode delivered very high specific capacitances of 524 F g−1 in KOH electrolyte and 280 F g−1 in H2SO4 electrolyte. Furthermore, this better integration of carbon nanotubes in the matrix of carbon aerogel improved its resistance to the attack by the electrolyte and conferred an excellent cycle life over 5,000 cycles of charge–discharge in both electrolytes.  相似文献   

4.
以钛酸四丁酯为源, 采用苯胺-丙酮原位生成水溶胶-凝胶法, 在乙醇超临界干燥过程中用部分水解的钛醇盐和硅醇盐对TiO2凝胶进行超临界修饰制备了具有核/壳纳米结构的块体TiO2/SiO2复合气凝胶. 制备的复合气凝胶具有优异的机械性能, 其杨氏模量可达4.5 MPa. 复合气凝胶同时具有极好的高温热稳定性. 经过1000 ℃热处理后, 线性收缩由纯TiO2气凝胶的31%降至复合气凝胶的10%, 且比表面积由纯TiO2气凝胶的31 m2·g-1提升至复合气凝胶的143 m2·g-1. 此外, 该复合气凝胶经1000 ℃热处理后具有优异的光催化降解亚甲基蓝的性能. 其优异的光催化性能得益于TiO2/SiO2复合气凝胶1000 ℃处理后高的比表面积和小的颗粒尺寸. 优良的耐热性能、力学性能和光催化性能使获得的具有核/壳纳米结构的TiO2/SiO2复合气凝胶在光催化领域具有良好的应用前景.  相似文献   

5.
Electron-rich and electron-poor aryl iodides are converted, in high to excellent yields, into the corresponding carboxylic acids through a hydroxycarboxylation reaction catalyzed by a recoverable and reusable phosphine free palladium-carbon aerogel catalyst using lithium formate and acetic anhydride as an internal condensed source of carbon monoxide. The catalyst system can be reused several times without any appreciable loss of activity.  相似文献   

6.
气凝胶由于其优异的理化性能和广阔的应用前景,近年来的发展十分迅速。然而传统的气凝胶多为块体材料,一定程度上忽略了特殊应用场景下对尺寸和形状的特定需求。将气凝胶材料制备成微球,一方面能够拓宽气凝胶材料的应用领域,另一方面也丰富了多孔微球材料的内涵。本文从几类主要的气凝胶体系(氧化硅气凝胶、纤维素气凝胶、间苯二酚-甲醛(RF)/碳气凝胶和石墨烯气凝胶)出发,综述了这些气凝胶微球的制备方法及其应用实例,并对气凝胶微球的研究现状及发展趋势做了简要评述。  相似文献   

7.
《中国化学快报》2023,34(2):107363
Graphene-polymer composites have attracted great attention as sensing materials due to their tailorable electrical conductivity, physicochemical properties, and sensitivity to geometric and functional changes. Herein, we report the first example of cylindrical monolithic polyimine vitrimer/graphene composites with excellent mechanical, compressive, rehealable and recyclable, and piezoresistive properties via simple infiltration of polymer monomers into the pores of graphene aerogel followed by thermal curing. The composites exhibit excellent durable compressibility (negligible reduction in the compression properties even after 3000 consecutive compression cycles), rapid recovery to the original size upon stress released, high compressive strength (up to 1.2 MPa), and high conductivity (up to 79 S/m). Excellent piezoresistive properties were observed, displaying consistent and reliable change of the electrical resistance with the compression ratio. Furthermore, rehealing with ~100% recovery of the compressive strength and electric conductivity was achieved under mild rehealing conditions, which is highly desired but has rarely been reported for electronic materials. The facile strategy for fabrication of rehealable monolithic polymer/GAs can open new possibilities for the sustainable development of composites with high electrical conductivity for various applications such as sensing, health monitoring, and movement detection.  相似文献   

8.
Nitrogen-containing carbon aerogel was prepared from resorcinol–melamine–formaldehyde (R–M–F) polymer gel precursor. The polymer gel was supercritically dried with CO2, and the carbonization of the resulting polymer aerogel under nitrogen atmosphere at 900 °C yielded the carbon aerogel. The polymer and carbon aerogels were characterized with TG/DTA–MS, low-temperature nitrogen adsorption/desorption (??196 °C), FTIR, Raman, powder XRD and SEM–EDX techniques. The thermal decomposition of the polymer aerogel had two major steps. The first step was at 150 °C, where the unreacted monomers and the residual solvent were released, and the second one at 300 °C, where the species belonging to the polymer network decomposition could be detected. The pyrolytic conversion of the polymer aerogel was successful, as 0.89 at.% nitrogen was retained in the carbon matrix. The nitrogen-doped carbon aerogel was amorphous and possessed a hierarchical porous structure. It had a significant specific surface area (890 m2 g?1) and pore volume (4.7 cm3 g?1). TG/DTA–MS measurement revealed that during storage in ambient conditions surface functional groups formed, which were released upon annealing.  相似文献   

9.
Self-supported 3-dimensional (3D) nitrogen-doped bimodal-pore structured carbon fiber aerogel is synthesized via a facile carbonization process using prawn shells as the raw material. The fabricated N-doped carbon fiber aerogel possesses micro- and meso-porous pores with an N doping level of 5.9% and a high surface area of 526 m2 g 1. As an electrocatalyst, the resultant N-doped carbon fiber aerogel exhibits superior electrocatalytic activity towards oxygen reduction reaction (ORR) with a more positive ORR onset-potential, better stability and high resistance to crossover effect compared to the commercial Pt/C electrocatalyst.  相似文献   

10.
Monitoring the trace amount of chemicals in various samples remains a challenge. This study was conducted to develop a new solid-phase microextraction (SPME) system (inside-tube SPME) for trace analysis of n-hexane in air and urine matrix. The inside-tube SPME system was prepared based on the phase separation technique. A mixture of carbon aerogel and polystyrene was loaded inside the needle using methanol as the anti-solvent. The air matrix of n-hexane was prepared in a Tedlar bag, and n-hexane vapor was sampled at a flow rate of 0.1 L/min. Urine samples spiked with n-hexane were used to simulate the sampling method. The limit of detection using the inside-tube SPME was 0.0003 μg/sample with 2.5 mg of adsorbent, whereas that using the packed needle was 0.004 μg/sample with 5 mg of carbon aerogel. For n-hexane analysis, the day-to-day and within-day coefficient variation were lower than 1.37%, with recoveries over 98.41% achieved. The inside-tube SPME is an inter-link device between two sample preparation methods, namely, a needle trap device and an SPME system. The result of this study suggested the use of the inside-tube SPME containing carbon aerogel (adsorbent) as a simple and fast method with low cost for n-hexane evaluation.  相似文献   

11.
A carbon aerogel was obtained by carbonization of an organic aerogel prepared by sol-gel polymerization of resorcinol and formaldehyde in water. The carbon aerogel was then CO(2) activated at 800 degrees C to increase its surface area and widen its microporosity. Evolution of these parameters was followed by gas adsorption and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) with contrast variation by using dry and wet (immersion in benzene and m-xylene) samples. For the original carbon aerogel, the surface area, S(SAXS), obtained by SAXS, is larger than that obtained by gas adsorption (S(ads)). The values become nearly the same as the degree of activation of the carbon aerogel increases. This feature is due to the widening of the narrow microporosity in the carbon aerogel as the degree of activation is increased. In addition, WAXS results show that the short-range spatial correlations into the assemblies of hydrocarbon molecules confined inside the micropores are different from those existing in the liquid phase.  相似文献   

12.
Borocarbonitride (BCN) is a new type of photocatalyst, but bulk BCN shows a large band gap, and low surface area, and moderate activity for photocatalysis. Here, a three‐dimensional (3D) porous ceramic BCN aerogel was developed as an effective photocatalyst for relevant reactions. The unique structures endow the aerogel with an adjustable band gap and a high surface area, excellent stability, and improved crystallinity, which accelerates the separation and transfer of electron‐hole pairs and promotes catalytic kinetics, thus enhancing the performance of photocatalytic reactions for hydrogen generation and carbon dioxide reduction. This work supplies a low‐cost, convenient and green synthesis method for building ceramic aerogels, and it provides a simple colloid chemistry strategy combined with boron‐containing compounds to facilitate further innovative breakthroughs in the novel ceramic aerogel materials design and development in the field of catalysis.  相似文献   

13.
A novel Z‐scheme polyimide (PI)/AgBr@Ag aerogel photocatalyst has been successfully synthesized by combining an in situ precipitation method and a supercritical drying method. The as‐prepared PI/AgBr@Ag‐50 (50 wt % AgBr@Ag in PI/AgBr@Ag) aerogel photocatalyst exhibited excellent photocatalytic activity for oxytetracycline degradation with a rate constant of 0.025 min?1, which was 6.9 and 2.6 times higher than that of the PI aerogel or the AgBr@Ag nanoparticles, respectively. More significantly, the PI/AgBr@Ag‐50 aerogel photocatalyst showed stable cycling, which could be attributed to the high mechanical strength and 3D network of the PI aerogel. The introduction of AgBr@Ag on PI with a heterojunction structure efficiently promoted the separation of electron–hole pairs by a Z‐scheme mechanism. The reduced metallic Ag nanoparticles were found to function as centers for the transfer of electrons from AgBr to PI. This work has revealed a new application for the aerogel PI/AgBr@Ag photocatalyst in environmental protection.  相似文献   

14.
Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.  相似文献   

15.
The paper describes the preparation of a new photoluminescent silica aerogel by embedding a new Tb(III) complex in a silica matrix by using N-hydroxysuccinimide as ligand. The Tb(III) complex prepared at a metal to ligand ratio of 1:3 (mol%) exhibits strong photoluminescence as a result of specific radiative transitions within the Tb(III) cation with the most intense peak located at 543 nm due to 5D4 → 7F5 transition. The synthesized complex was doped in the silica matrix through a catalyzed sol–gel process. After ageing in ethanol, the alcogel was dried under supercritical regime by exchanging the ethanol with liquid carbon dioxide followed by supercritical evaporation. The leaching of the free complex from the alcogel during ageing and solvent exchange phases was found to be minimal most likely due to the interactions between chemical groups of complex with those specific to silica matrix. The obtained regular shaped monolithic aerogel preserved the remarkable photoluminescent properties and also improved the thermal stability of the free complex. Both, the free complex and doped aerogel were characterized through thermal analysis, FT-IR, powder X-ray diffraction, Scanning electron microscopy and fluorescence spectroscopy. For comparison purposes, an undoped silica aerogel was also prepared and investigated through FT-IR, BET analysis and powder X-ray diffraction. The excellent photoluminescent properties might recommend the prepared aerogel for applications in optoelectronic devices where photonic conversion materials are required.  相似文献   

16.
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon‐based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt‐Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon‐supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5‐fold larger surface‐specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C).  相似文献   

17.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

18.
孙敏  李春英  孙明霞  冯洋  冯加庆  孙海丽  冯娟娟 《色谱》2022,40(10):889-899
因具有良好的萃取性能,有机气凝胶已被应用于样品前处理领域,为了进一步改善其对多环芳烃类污染物的萃取能力,利用氧化石墨烯对三聚氰胺-甲醛气凝胶进行改性,制备了一种氧化石墨烯功能化三聚氰胺-甲醛气凝胶,将其作为萃取涂层涂覆到不锈钢丝表面,通过扫描电镜和X射线光电子能谱对萃取涂层进行表征,结果表明氧化石墨烯并未破坏气凝胶的三维网络多孔结构。将4根气凝胶涂覆的不锈钢丝装进一根长度30 cm、内径0.75 mm的聚醚醚酮管内,制备了一种新型的纤维填充型固相微萃取管。将萃取管与高效液相色谱联用,构建管内固相微萃取-液相色谱在线富集分析系统。以8种多环芳烃(萘(Nap)、苊烯(Acy)、苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Fla)和芘(Pyr))作为模型分析物,评价了萃取管的萃取性能,考察了氧化石墨烯对气凝胶萃取性能的改善,结果表明萃取效率被提升至最高2.5倍。详细考察了样品体积、样品流速、样品中有机溶剂浓度以及脱附时间对于萃取效率的影响,并建立了管内固相微萃取-液相色谱在线分析方法。该法对8种多环芳烃分析物的检出限为0.001~0.005μg/L,萘、苊烯、苊、芴的线性范围为0.017~20.0μg/L,菲、蒽的线性范围为0.010~20.0μg/L,荧蒽和芘的线性范围为0.003~15.0μg/L,精密度良好(日内重复性RSD≤4.8%,日间重复性RSD≤8.6%)。研究所发展的分析方法比已报道的某些分析方法具有更好的灵敏度、更宽的线性范围和更短的分析时间,并具有在线富集和在线分析的独特优点。将该分析方法应用于常见饮用水(包括瓶装矿泉水和饮水机的直饮水)中多环芳烃的分析检测,加标回收率试验结果(76.3%~132.8%)表明该分析方法能够高灵敏、快速、准确地检测饮用水中痕量多环芳烃污染物。经过稳定性考察,发现研究所制备的固相微萃取管在实验过程中表现出良好的使用寿命和化学稳定性。  相似文献   

19.
A strategy to synthesize amorphous, mesoporous alumina by nanocasting has been developed, involving carbon aerogel as a hard template and aluminum nitrate solution as an alumina precursor. The alumina generated exhibits small, transparent granules with a 3-6 mm diameter and has inherited the three-dimensional network structure of the carbon template. The mesopore surface area of the alumina can be as high as 365 m2 g(-1), and the pore volume reaches 1.55 cm3 g(-1) after calcination at 600 degrees C in air for 8 h. The pore parameters can be varied within a certain range by variation of the carbon aerogel template and the loading amount of the alumina precursor. At high loadings, the obtained glassy alumina clearly has a bimodal pore size distribution in the mesopore range.  相似文献   

20.
As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic at room temperature and did not deform at all under a given stress. However, if upon cooling; even after unloading, it did not recover the initial shape. When the polymer was ratio reach 90%. This observation illustrates that the shape memory phenomenon with 90%recovery ratio was found to be archived by changing the operation temperature below and above of Tm of crystalline PEG, which is based on a reversible order-disorder transition of crystalline aggregates. Similarly, the investigation on the shape memory transitin at Tg that when the sample (above Tg of the semi-IPN), the polymer showed second shape memory behavior, and quickly recovered to initial shape in 45s with shape recovery ratio more than 99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号