首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen-Li Yu 《中国物理 B》2023,32(1):10302-010302
An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.  相似文献   

2.
李海  邹健  邵彬  陈雨  华臻 《物理学报》2019,68(4):40201-040201
基于单模微腔与二能级原子系综(库)构成的混合动力学模型,探索了非平衡库中量子关联相干(quantum correlated coherence, QCC)[Tan K C, et al. 2016 Phys. Rev. A 94, 022329])对系统动力学的影响.推导了量子关联相干库下系统演化的动力学方程.借助于含QCC的类GHZ库及其对应的参考库,清晰地揭示了非平衡库中QCC扮演着热力学资源的角色——能够有效辅助系统从库中提取更多能量.同时,结合解析与数值模拟方法研究了类GHZ库的有效温度和系统与库间的耦合参数对QCC能量效应的影响.研究发现, QCC对腔场的能量贡献不仅依赖于库的有效温度,而且也和系统与库间的耦合参数有关.这与二能级原子构成的传统的热库的情况(腔场从热库中提取的能量仅仅依赖于库的有效温度即二能级原子的热布局)完全不同.此外,研究发现QCC可视作一类优质的热力学资源,在特定条件下其对系统的能量贡献远大于原子热布局的贡献.因此, QCC将是高输出功率或高效率量子热机设计中的一类重要燃料.  相似文献   

3.
The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a non-zero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that at a non-zero temperature, the quantum coherence decays much faster than at zero temperature. Moreover, the non-zero temperature thermal bath will bring a crucial suppression to the quantum effects of the observables, which causes these quantum effects to become unable to persist up to the Ehrenfest time but is insufficient to destroy the quantum-classical transition.  相似文献   

4.
The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including the coupling strength of two spins,the interaction strength between the intermediate spin and the spin bath,the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases.The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state.At finite temperature,we find that coherence is more robust than quantum discord,which is better than entanglement,in terms of resisting the influence of environment.Therefore,quantum coherence is more tenacious than quantum correlation as an important resource.  相似文献   

5.
We investigate quantum heat transfer in a nonequilibrium qubit-phonon hybrid open system,dissipated by external bosonic thermal reservoirs.By applying coherent phonon states embedded in the dressed quantum master equation,we are capable of dealing with arbitrary qubit-phonon coupling strength.It is counterintuitively found that the effect of negative differential thermal conductance is absent at strong qubit-phonon hybridization,but becomes profound at weak qubit-phonon coupling regime.The underlying mechanism of decreasing heat flux by increasing the temperature bias relies on the unidirectional transitions from the up-spin displaced coherent phonon states to the down-spin counterparts,which seriously freezes the qubit and prevents the system from completing a thermodynamic cycle.Finally,the effects of perfect thermal rectification and giant heat amplification are unraveled,thanks to the effect of negative differential thermal conductance.These results of the nonequilibrium qubit-phonon open system would have potential implications in smart energy control and functional design of phononic hybrid quantum devices.  相似文献   

6.
By virtue of a superconducting charge qubit, we derive the off-diagonal matrix operator and investigate the decoherence of the system in different regimes coupled to, respectively, the boson bath and the spin bath. It is found that the two different baths make a bit of difference on the decay of the system at low but finite temperature and the decoherence of the system is most closely linked with the regime as well as the coupling strength. Therefore, by optimizing some reasonable parameters, we can suppress appropriately the decoherence of a given quantum system.  相似文献   

7.
罗质华 《物理学报》2013,62(20):207201-207201
采用关联表象变分波函数方案, 介入三个非经典关联效应, 求解有限温度双能态自旋-晶格声子耦合量子隧道系统的非经典态, 着重研究化解由于粒子自旋-单声子相互作用引起的量子涨落导致双能态系统的退相干性量子耗散. 这三个非经典关联效应是: 1) 声子位移-粒子自旋 (σz)间强非绝热关联; 2) 声子压缩态效应及其伴随发生的单声子相干态-声子压缩态两过程相干效应; 3) 由关联表象导致的声子位移(UD)与声子压缩(US)的表象关联非绝热修正. 结果表明: 由于引入粒子自旋-双声子相互作用, 大幅度地增强了声子场压缩态, 特别是更进一步极大幅度地增强了非经典压缩-相干态效应. 因此, 由粒子自旋-单声子相互作用产生的Debye-Walle相干弹性散射效应导致量子隧道项(-Δ0σx)的强烈指数衰减及其伴随严重的量子相干损失的极大幅度的抑制, 并且自旋-晶格声子耦合量子隧道系统的非经典态能量大幅度降低. 关键词: 非经典能态 量子隧穿相干损失 自旋-双声子相互作用 压缩相干态效应  相似文献   

8.
Coherence is a key resource in quantum information science.Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems.Using P-representation of density matrix,we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states.It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value.We also discuss the characteristic function of the Gaussian states in the non-Markovian process,which provides an inevitable bridge for the control and operation of quantum coherence.  相似文献   

9.
The quantum thermalization of the Jaynes–Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is studied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individual heat baths or a common heat bath. It is found that in the individual heat-bath case, the JC model can only be thermalized when either the two heat baths have the same temperature or the coupling of the JC system to one of the two baths is turned off. In the common heat-bath case, the JC system can be thermalized irrespective of the bath temperature and the system–bath coupling strengths. The thermal entanglement in this system is also studied. A counterintuitive phenomenon of vanishing thermal entanglement in the JC system is found and proved.  相似文献   

10.
The effect of spontaneously generated coherence (SGC) on the quantum heat engine (QHE) consisting of a laser system is studied in terms of its dynamical evolution and the generation of coherences. The QHE is coupled to the two thermal photon reservoirs, a squeezed thermal bath as well as to a cavity mode. The coherence associated with the transition interacting with squeezed reservoir and the average thermal photon number of the hot (as well as cold) reservoir shows a non monotonous behavior between them. The dynamics along with generated coherences of the system and the laser power emitted depend sensitively on the hot, cold and squeezed reservoir parameters.  相似文献   

11.
Quantum thermal transistor is a microscopic thermodynamical device that can modulate and amplify heat current through two terminals by the weak heat current at the third terminal. Here we study the common environmental effects on a quantum thermal transistor made up of three strong-coupling qubits. It is shown that the functions of the thermal transistor can be maintained and the amplification rate can be modestly enhanced by the skillfully designed common environments. In particular, the presence of a dark state in the case of the completely correlated transitions can provide an additional external channel to control the heat currents without any disturbance of the amplification rate. These results show that common environmental effects can offer new insights into improving the performance of quantum thermal devices.  相似文献   

12.
We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels.  相似文献   

13.

We study the effects of Hawking radiation and bath temperature on quantum steering and entanglement for a two-mode Gaussian state exposed in the background of a black hole and immersed in the two independent thermal baths. We find that both the effects can destroy the quantum steering and entanglement. Quantum steering always exists sudden death for any Hawking temperature and any bath temperature, but entanglement does not in zero-temperature thermal bath. Both the Hawking radiation and the asymmetry of thermal baths can induce the asymmetry of quantum steering, but the latter effect is much weaker than the former. An unintuitive result is that the observer who stays in the Hawking radiation or in the thermal bath with higher temperature has more stronger steerability than the other one. We also find that Hawking radiation and thermal noise can change the asymptotic behavior of steering and entanglement versus the squeezing parameter.

  相似文献   

14.
We investigate the rate at which a particle decays out of a metastable potential well by quantum tunneling. We calculate the leading corrections to the exponent and the prefactor of the rate, due to coupling to the heat bath and finite temperatures. Since the results are essentially equivalent to those employing the transition state assumption, namely maintaining thermal equilibrium, we argue for the lower on the damping strength above which these results should be valid. These results are in good accord with recently reported experiments.  相似文献   

15.
为了研究量子相干性在腔量子电动力学系统中的动力学和分布特性,基于两个各自捕获原子系综的光学腔建立了双光学腔系统,腔与腔之间由光纤耦合.利用相对熵度量的量子相干性,引入量子相干非平衡性的概念,分析了系统中相干动力学和光纤-腔耦合强度对相干性分布的影响.结果表明:在强耦合极限下,光纤-腔耦合强度的增加有利于保持两腔中的原子的整体相干性;光纤-腔耦合强度、原子-腔耦合强度以及原子数三个参数之间满足特定条件时,腔内的原子相干性可以传输至另一个腔.考虑腔、光纤及原子都存在耗散的情形,对比了不同耗散速率和非耗散情形下的相干性演化,发现耗散使得耦合双腔系统的相干性以及各个腔中的原子相干性发生衰减.  相似文献   

16.
We investigate the quantum speed limit (QSL) time of an electronic spin coupled to a bath of nuclear spins. We consider three types of initial states with different correlations between the system and bath, i.e., quantum correlation, classical correlation, and no any correlation. Interestingly, we show that the QSL times of the central spin for these three types of initial correlations are identical when the couplings are homogeneous. However, it is remarkable different for inhomogenous couplings. The QSL time of the central spin is sensitive to the initial states, the average coupling strength, the distribution of the couplings between the system and bath and the number of the nuclear spins in the bath. Furthermore, we find that the coherence in the initial state has significant influences on the QSL time of the system, and can lead to the increase of QSL time for homogeneous couplings.  相似文献   

17.
The effect of cooperative coupling strength (CCS), i.e., random coupling strength and time-periodic coupling strength, on multiple coherence resonances in unidirectionally coupled neural system has been investigated. Results show that noise, frequency and amplitude play efficient roles for the enhancement of various coherent behaviours. There exist an optimal frequency and an optimal amplitude which make the system to display the best coherent behaviours. Furthermore, the novel coherence biresonance (CBR) induced by frequency of CCS and coherence multiresonances (CMR) induced by amplitude of CCS, are found.  相似文献   

18.
The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.  相似文献   

19.
We consider a CNOT gate operation under the influence of quantum bit-flip noise and demonstrate that ac fields can change the qubit Hamiltonian in such a way that it approximately commutes with the bath coupling. Then the noise effectively acts as phase noise which improves coherence up to several orders of magnitude while the gate operation time remains unchanged. Within a high-frequency approximation, both purity and fidelity of the gate operation are studied analytically. The numerical treatment with a Bloch-Redfield master equation confirms the analytical results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号