首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ce2Sn2O7 pyrochlore was synthesized by a hydrothermal method. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composition and valence state of the sample. The oxygen exchange property of the Ce2Sn2O7 phase was measured by an oxidation reaction in sealed air atmosphere and a followed reduction reaction in 5% H2-95% N2 atmosphere. Gas chromatography (GC) was used to analyze the oxygen change in the reaction. The results show that Ce2Sn2O7 sample has excellent oxygen absorption capacity at 250°C as Ce3+ ions are oxidized to Ce4+ ions. The oxidized sample can be reduced by 5% H2-95% N2. The refreshed sample remains the capacity of oxygen absorption, while the oxygen exchange capacity degrades with the reduction times.  相似文献   

2.
Oxidation Products of Intermetallic Compounds. III. Low Temperature Forms of K2Sn2O3 and Rb2Sn2O3 and a Notice about K2Ge2O3 By controlled oxidation of KSn (at 320°C) and RbSn (at 410°C) with O2 the hitherto unknown low temperature forms of K2Sn2O3 (a = 8.4100(8) Å) and Rb2Sn2O3 (a = 8.6368(8) Å) are obtained, which are isotopic with cubic K2Pb2O3. Oxidation at higher temperatures (at 510–5207°C) leads to the well-known HT-forms. The Madelung Part of Lattic Energie, MAPLE, is calculated for both compounds. K2Pb2O3, Rb2Pb2O3, Cs2Pb2O3, and Cs2Sn2O3 have been prepared too by oxidation of KPb, RbPb, CsPb, and CsSn. Oxidation of KGe (at 400°C) leads to the first oxogermanate(II), K2Ge2O3 (cubic a = 8.339(1) Å, isotypic with K2Pb2O3) together with K6Ge2O7.  相似文献   

3.
The Bi2Sn2O7 pyrochlore is known to undergo a sequence of structural phase transitions with an increase in temperature. Raman spectroscopy was employed in the investigation of the temperature dependence of the active phonons in the Raman spectrum. We observed 19 broad modes at room temperature, reflecting the low symmetry of the α-phase of Bi2Sn2O7. The modes were discussed in relation to the Raman spectra of other pyrochlore-based oxides. The temperature dependence of the phonons evidences the α  β structural phase transition observed near 127 °C.  相似文献   

4.
A tin dioxide–sodium stannate composite has been obtained by the thermal treatment of sodium peroxostannate nanoparticles at 500°C in air. X-ray powder diffraction study has revealed that the composite includes crystalline phases of cassiterite SnO2, sodium stannate Na2Sn2O5, and sodium hexahydroxostannate Na2Sn(OH)6. Scanning electron microscopy has shown that material morphology does not change considerably as compared with the initial tin peroxo compound. Electrochemical characteristics have been compared for the anodes of lithium-ion batteries based on tin dioxide–sodium stannate composite and anodes based on a material manufactured by the thermal treatment of graphene oxide–tin dioxide–sodium stannate composite at 500°C in air.  相似文献   

5.
On the Tin Oxide Sn2O3, which is formed by Disproportionation of SnO When tin monoxide disproportionates at >300°C, together with SnO2 an unstable tin oxide is formed, which further decomposes under the same conditions. By chemical analysis and a modified method of X-ray analysis, its formula is determined as Sn2O3.  相似文献   

6.
Glasses in the system 5In2O3·94Na2B4O7 were fabricated via melt quenching technique. The amorphous nature of the quenched glasses was confirmed by X‐ray powder diffraction studies, and the infrared spectra of the glasses show no boroxol ring formation in the structure of these glasses. Differential thermal analysis is shown glass transition temperature 696°C and crystallization temperature 1151°C. A cerium‐zirconium mixed oxide Ce0.75Zr0.25O2 and Ho‐doped cerium‐zirconium mixed oxide were obtained by solid‐state method. Then glass powder and Ho‐doped cerium‐zirconium mixed oxide were mixed. The mixture was heated in a crucible. The glass‐ceramic sample was obtained by pouring the melts on stainless steel. Obtained samples were annealed at 450°C for 1 h to remove thermal strain. Differential thermal analysis for glass‐ceramic sample is shown glass transition temperature 668°C and crystallization temperature 1159°C. The scanning electron microscopy study for glass‐ceramic indicates that the crystallized glass consists of rod‐like crystals with average diameter of about 38 nm dispersed in the glassy regions.  相似文献   

7.
Nanosized Ce0.7Zr0.3Mx oxide particles (M=Zn, Sn, x = 0.1, 0.3, 0.5) with 10–20 nm diameter were synthesized by a coprecipitation method. Their structure and morphology were characterized by XRD, FT-Raman and TEM. Zn did not incorporate well into Ce0.7Zr0.3 oxide, but Sn did. The catalytic performance of these particles for CO oxidation was investigated between 150–400°C under severe conditions. Ce0.7Zr0.3Sn0.5 had the best performance with the lowest light-off temperature range (175–210°C). A temperature hysteresis was observed in all catalysts studied.  相似文献   

8.
Mesoporous Ce0.75Zr0.25O2 solid solution powders were successfully synthesized by a co-precipitation method. A combination of 10 wt% copper oxide, manganese oxide, and nickel oxide was added to the Ce0.75Zr0.25O2 support by impregnation method and calcined in the air with a flow rate of 2 ml s?1 at 400 °C for 4 h. All catalysts were characterized using Hydrogen Temperature Programmed Reduction (H2-TPR), X-ray Diffraction (XRD), and Brunauer-Emmet-Teller (BET) isotherm methods to find the interaction between metals, the crystallinity of the catalyst, surface area and pore volume of the catalyst, respectively. The 3.3% CuO-3.3% MnO2-3.3% NiO/Ce0.75Zr0.25O2 catalyst showed higher catalytic activity for benzene oxidation with benzene conversion of 90% at 250 °C and weight hourly space velocity (72,000 mL g?1 h?1) when compared to one metal oxide only. This finding presents a high activity and low-cost catalysts for removing a very lean concentration of benzene containing in the industrial flue gas at low temperatures.  相似文献   

9.
Fe4Si2Sn7O16: A Combination of FeSn6-Octahedra with Layers of (Fe3Sn)O6-Octahedra; Preparation, Properties, and Crystal Structure Fe4Si2Sn7O16 has been prepared by a solid state reaction at 900 °C from a mixture of Fe2O3, SnO2, Sn, and Si. The compound is a paramagnetic semiconductor. Results of Mössbauer and suszeptibility measurements as well as bond length-bond strength calculations lead to the possible ionic formulation Fe42+Si24+Sn12+Sn14+O162–. The compound crystallizes in the trigonal space group P3m1 (no. 164), with one formula unit per cell. Lattice parameters obtained by powder measurements are: a = 6.8243(6) Å, c = 9.1404(6) Å, γ = 120°, V = 368.6(1) Å3. The structure consists of layers of edge linked oxygen octehedra exactly centered by Sn and Fe in the ratio 1 : 3. Three plains of isolated SiO4 tetrahedra, FeSn6 octahedra and again SiO4 terahedra are inserted between two such layers. The layers are stacked along [001] and linked three-dimensionally by oxygen.  相似文献   

10.
Reactions between cerium trichloride and oxide ions were studied in NaCl+KCl (1/1) at 1000°K, by potentiometry with a calcia-stabilized zirconia membrane electrode. Titration curves clearly demonstrated the existence of soluble cerium oxychloride (CeO+) and precipitated cerium oxide (Ce2O3), with respective dissociation constants 10?11 and 10?30 (molality scale). The corresponding conditional solubility diagram {log S (CeIII)=f(pO2?)} is presented and discussed.  相似文献   

11.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
To study the effect of chromium oxide on the electric properties of Ce0.9Gd0.1O2, a solid-oxide fuel cell electrolyte, two approaches were used: (a) the studying of electrochemical properties of the Ce0.9Gd0.1O2- electrolyte after the spontaneous adsorption of chromium-containing molecules from a gas phase and (b) the analyzing of transport properties of the Ce0.9Gd0.1O2-based chromium-containing compositions obtained by the mixing of solid-oxide electrolyte with chromium(III) oxide. It was found that the chromium reduction at the electrolyte surface dominates when chromium is adsorbed from gas phase. Both approaches allow concluding that the chromium presence in Ce0.9Gd0.1O2 deteriorates the electrolyte transport properties at temperatures above 735°С. This is caused by the chromium incorporation into the electrolyte’s fluorite structure, as well as surface microheterogeneity induced by the chromium presence at the Ce0.9Gd0.1O2 surface and the cerium and gadolinium cation redistribution between the grains’ bulk and surface. At intermediate temperatures (below 735°С) the electric conductivity of the Ce0.9Gd0.1O2-based chromium-containing composition exceeds that of the initial solid-oxide electrolyte, which can be due to changes in transport properties of the chromium-containing phases formed at the Ce0.9Gd0.1O2 surface and grain boundaries.  相似文献   

13.
A new quaternary oxide, calcium yttrium stannate, Ca0.8Y2.4Sn0.8O6, is isostructural with Mg3TeO6 (trigonal, R). The empirical formula can be expressed as (Ca0.2667Y0.7333)6(Y0.4Sn0.6)SnO12. The Ca/Y site has a distorted coordination octa­hedron of O atoms, with Ca/Y—O distances ranging from 2.227 (3) to 2.350 (3) Å, while the octa­hedra of O atoms that coordinate to the Sn and Y/Sn sites are nearly regular, with an Sn—O distance of 2.066 (2) Å and a Y/Sn—O distance of 2.147 (3) Å.  相似文献   

14.
This paper presents a study regarding the obtaining of NiCr2O4 by two new unconventional synthesis methods: (i) the first method is based on the formation of Cr(III) and Ni(II) carboxylate-type precursors in the redox reaction between the nitrate ion and 1,3-propanediol. The thermal decomposition of these complex combinations, at ~300 °C, leads to an oxide mixture of Cr2O3+x and NiO, with advanced homogeneity, small particles and high reactivity. On heating this mixture at 500 °C, Cr2O3 reacts with NiO to form NiCr2O4, which was evidenced by FT-IR and X-ray diffractometry (XRD) analysis; (ii) the second method starts from a mechanical mixture of (NH4)2Cr2O7 and Ni(NO3)2·6H2O. On heating this mixture, a violent decomposition at 240 °C with formation of an oxides mixture (Cr2O3 + CrO3) and NiO takes place. On thermal treatment up to 500 °C, an intermediary phase NiCrO4 is formed, which by decomposition at ~700 °C leads to NiCr2O4, evidenced by FT-IR and XRD analysis. NiCr2O4 is formed, in both cases, starting with a temperature higher than 400 °C, when the non-stoichiometric chromium oxide (Cr2O3+x ) loses the oxygen excess and turns to stoichiometric chromium oxide (Cr2O3), which further reacts with NiO.  相似文献   

15.
On Oxostannates(II). III. K2Sn203, Rb2Sn203, and Cs2Sn2O3 – a Comparison Hitherto unknown Rb2Sn2O3 has been obtained by heating of mixtures of binary oxides [RbO0.48 + SnO, Rb:Sn = 1.1:1, Al2O3?cylinders, Ar] as deep yellow powder or deep yellow single crystals. It is isotypic to K2Sn2O3, R3 m-D with a = 6.086 Å, c = 15.101 Å, Z = 3, dcalc = 4.69, dobs = 4.64 g X cm?3. For 260 hkl it is R = 5.27% and Rw = 5.09% (MoKα, 4-circle diffractometer data). The structure of K2Sn2O3 and Rb2Sn2O3 is compared with that of Cs2Sn2O3. For both types Effektive Coordination Numbers, ECoN, and the Madelung Part of Lattice Energy, MAPLE, have been calculated.  相似文献   

16.
Gas-sensitive (sensory) properties of bismuth-tin oxide materials, including ceramic films with the Bi2Sn2O7 composition and pyrochlore structure, were considered, as applied to the determination of H2, CO, and CH4 in an air mixture.  相似文献   

17.
The temperature of soot oxidation and efficiency of Ce0.5Zr0.5O2 catalyst depends on its morphology, which determines the area of intergranular contact between the solid substrate and the catalyst. The temperature-programmed reduction in hydrogen to 1000°C and oxidation at 500°C (redox cycles) cause the mobility of oxygen in oxide to be enhanced and decrease the temperature of soot combustion. Oxidation of soot in the air flow on the Ce0.5Zr0.5O2 catalyst result in its activation. Reuse of the catalyst decreases the temperature of soot oxidation.  相似文献   

18.
Optimal conditions for the synthesis of Sm2Sn2O7 with pyrochlore crystal structure by solid-phase reactions were determined. The effect of temperature (346–1050 K) on the molar heat capacity of samarium stannate was studied by differential scanning calorimetry. Thermodynamic properties of Sm2Sn2O7 in the temperature range under study were determined using the experimental data.  相似文献   

19.
Preparation and Crystal Structure of Rb2Sn3S7 · 2 H2O and Rb4Sn2Se6 Rb2Sn3S7 · 2 H2O has been prepared by hydrothermal reaction of SnS2 and Rb2CO3 in an with H2S saturated aqueous solution at 190°C. The crystal lattice contains chain anions [Sn3S72?] which display both SnS4 tetrahedra and SnS6 octahedra. Methanolothermal reaction of SnCl2 with Se and Rb2CO3 at 145°C leads to the formation of Rb4Sn2Se6 which contains edge-bridged bitetrahedral [Sn2Se6]4? anions.  相似文献   

20.
On Oxostannates(II). II. On the Knowledge of Cs2Sn2O3 Cs2Sn2O3 has been prepared for the first time by heating of mixtures of CsO0.46 and SnO with Cs:Sn = 1.0:1 [under Argon, Al2O3 or Ag cylinders, 480°C, 3 d or 18 d as pale light yellow powder or light yellow transparent single crystals, respectively]. According to four-circle-diffractometer data [955 of 1199 I0(hkl), Mo-Kα, not corrected for absorption, R = 8.17%, Rw = 7.97%] the compound crystallizes in Pnma with a = 13.708; b = 6.098; c = 8.921 Å, Z = 4, dpyk = 4.84 g · cm?3, dcalc = 4.91 g · cm?3. Parameters see text. Cs2Sn2O3 has a layer structure like K2Sn2O3 but with an undulated instead of a flat O3 part of the structure and different coordination of Cs versus O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号