首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文应用DSMC方法初步研究了稀薄气体状态下Rayleigh-Benard系统的不稳定性特征,着重考察了气体密度梯度对Rayleihg-Benard系统不稳定性特征的影响。研究表明DSMC方法能够成功地模拟Rayleigh-Benard系统内涡的运动,得到了与外力方向相反的密度梯度会增加Rayleigh-Benard系统流动不稳定性的结果。  相似文献   

2.
将EPSM算法与DSMC方法结合,构造了可模拟含近连续流区及过渡流区的DSMC/EPSM混合算法。运用混合算法模拟了马赫数等于5时超音速竖板绕流及马赫数等于4时超音速平板绕流,并将结果与DSMC算法的结果进行比较,证明了DSMC/EPSM混合算法的有效性,同时将EPSM算法与DSMC算法的效率进行了比较。  相似文献   

3.
气体化学反应流动的DSMC/EPSM混合算法研究   总被引:3,自引:0,他引:3  
发展了平衡粒子模拟方法(EPSM),建立了与高温气体化学反应动力学理论相匹配的:EPSM耦合模型,并通过混合参数进行流区的自动识别,将:EPSM方法与蒙特卡罗直接模拟方法(OSMC)结合,构造了可模拟化学反应流动的DSMC/EPSM混合算法。应用该算法对汲及化学反应的二维高超音速竖板绕流流场进行模拟,将结果与DSMC方法的结果进行比较,验证了新算法对求解化学反应流动的可行性。将混合算法的计算效率与DSMC方法的计算效率进行比较,发现混合算法能够大大提高计算效率。  相似文献   

4.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The Boltzmann-Bhatnagar-Gross-Krook(BGK)model is investigated for its validity regarding the collision term approximation through relaxation evaluation. The evaluation is based on theoretical analysis and numerical comparison between the BGK and direct simulation Monte Carlo(DSMC) results for three specifically designed relaxation problems. In these problems, one or half component of the velocity distribution is characterized by another Maxwellian distribution with a different temperature. It is analyzed that the relaxation time in the BGK model is unequal to the molecular mean collision time. Relaxation of component distribution fails to involve enough contribution from other component distributions, which makes the BGK model unable to capture details of velocity distribution, especially when discontinuity exists in distribution. The BGK model,however, predicts satisfactory results including fluxes during relaxation when the temperature difference is small. Particularly, the model-induced error in the BGK model increases with the temperature difference, thus the model is more reliable for low-speed rarefied flows than for hypersonic flows.  相似文献   

6.
ABSTRACT

The high-order hybridisable discontinuous Galerkin (HDG) method is used to find steady-state solution of gas kinetic equations on two-dimensional geometry. The velocity distribution function and its traces are approximated in piecewise polynomial space on triangular mesh and mesh skeleton, respectively. By employing a numerical flux derived from the upwind scheme and imposing its continuity on mesh skeleton, the global system for unknown traces is obtained with fewer coupled degrees of freedom, compared to the original DG method. The solutions of model equation for the Poiseuille flow through square channel show the higher order solver is faster than the lower order one. Moreover, the HDG scheme is more efficient than the original DG method when the degree of approximating polynomial is larger than 2. Finally, the developed scheme is extended to solve the Boltzmann equation with full collision operator, which can produce accurate results for shear-driven and thermally induced flows.  相似文献   

7.
DSMC方法与稀薄气流计算的发展   总被引:11,自引:2,他引:11  
沈青 《力学进展》1996,26(1):1-13
直接模拟MonteCarlo(DSMC)方法是依赖物理的概率模拟方法.在求解过渡领域流动的众多解析、数值和模拟方法中,目前只有DSMC方法是可以模拟三维复杂真实气体流动的方法.从宏观参量到细观速度分布函数的水平上,该方法均能得到实验的支持.本文综述了DSMC方法的最近发展,包括我们在检验模型、处理内能松弛模拟和化学反应模拟以及求解三维绕流的通用方法等方面的工作。   相似文献   

8.
认识稀薄气体动力学   总被引:7,自引:0,他引:7  
沈青 《力学与实践》2002,24(6):1-14
以通俗易懂的方式介绍了空气动力学当气体间断分子效应显著时发展起来的特殊分文——稀薄气体动力学、讨论了非平衡现象与稀薄气体动力学的关系.通过与8速度气体模型的间断Boltzmann方程的对比,解释了Boltzmann方程碰撞项的物理意义和数学困难,简要综述了其一般解法、讨论了分子在物体表面的反射和问题的边界条件,着重介绍了直接模拟Monte Carlo(DSMC)方法和为克服低速稀薄流动(如MEMS中流动)中模拟困难的信息保存(IP)方法。  相似文献   

9.
A collision-limiter method, designated as equilibrium direct simulation Monte Carlo (eDSMC), is proposed to extend the DSMC technique to high pressure flows. The method is similar to collision-limiter schemes considered in the past with the important distinction that for inviscid flows, equilibrium is enforced in the entire flow by providing a sufficient number of collisions, based on pre-simulation testing. To test the method with standard DSMC and Navier–Stokes (NS) methods, axi-symmetric nozzle and embedded-channel flows are simulated and compared with experimental temperature data and pre-existing calculations, respectively. The method is shown to agree with third-order Eulerian nozzle flows and first-order channel flows. Chapman–Enskog theory is utilized to predict the range of initial conditions where eDSMC is potentially useful for modeling flows that contain viscous boundary layer regions. Comparison with supersonic nozzle data suggests that the eDSMC method is not adequate for capturing the large variation in flow length scales occurring in supersonic expansions into a vacuum. However, when eDSMC is used in combination with the baseline-DSMC method a near-exact solution is obtained with a considerable computational savings compared to the exact DSMC solution. Viscous flow channel calculations are found to agree well with an exact Navier–Stokes (NS) calculation for a small Knudsen number case as predicted by Chapman–Enskog theory.  相似文献   

10.
Predicting unsteady flows and aerodynamic forces for large displacement motion of microstructures requires transient solution of Boltzmann equation with moving boundaries. For the inclusion of moving complex boundaries for these problems, three immersed boundary method flux formulations (interpolation, relaxation, and interrelaxation) are presented. These formulations are implemented in a 2‐D finite volume method solver for ellipsoidal‐statistical (ES)‐Bhatnagar‐Gross‐Krook (BGK) equations using unstructured meshes. For the verification, a transient analytical solution for free molecular 1‐D flow is derived, and results are compared with the immersed boundary (IB)‐ES‐BGK methods. In 2‐D, methods are verified with the conformal, non‐moving finite volume method, and it is shown that the interrelaxation flux formulation gives an error less than the interpolation and relaxation methods for a given mesh size. Furthermore, formulations applied to a thermally induced flow for a heated beam near a cold substrate show that interrelaxation formulation gives more accurate solution in terms of heat flux. As a 2‐D unsteady application, IB/ES‐BGK methods are used to determine flow properties and damping forces for impulsive motion of microbeam due to high inertial forces. IB/ES‐BGK methods are compared with Navier–Stokes solution at low Knudsen numbers, and it is shown that velocity slip in the transitional rarefied regime reduces the unsteady damping force. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The effect of the collision‐partner selection scheme on the accuracy and the efficiency of the Direct Simulation Monte Carlo method is investigated. Several schemes that reduce the mean collision separation, including the fixed sub‐cell scheme, the transient adaptive sub‐cell scheme, and the virtual sub‐cell scheme, are evaluated. Additionally, a new scheme is proposed that limits the population from which collision partners are selected based on the distance traveled by a simulator and performs near‐neighbor collisions using this population. These collision‐partner selection schemes are assessed for Fourier flow (heat conduction between parallel plates) and a standard hypersonic benchmark problem (Mach 15.6 nitrogen flow over a 25–55° biconic). The new limited‐selection near‐neighbor scheme has superior performance compared to the other schemes for both flows and reduces both the spatial and temporal discretization errors relative to random‐selection and nearest‐neighbor collision‐partner selection schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The nonequilibrium steady gas flows under the external forces are essentially associated with some extremely complicated nonlinear dynamics, due to the acceleration or deceleration effects of the external forces on the gas molecules by the velocity distribution function. In this article, the gas-kinetic unified algorithm (GKUA) for rarefied transition to continuum flows under external forces is developed by solving the unified Boltzmann model equation. The computable modeling of the Boltzmann equation with the external force terms is presented at the first time by introducing the gas molecular collision relaxing parameter and the local equilibrium distribution function integrated in the unified expression with the flow state controlling parameter, including the macroscopic flow variables, the gas viscosity transport coefficient, the thermodynamic effect, the molecular power law, and molecular models, covering a full spectrum of flow regimes. The conservative discrete velocity ordinate (DVO) method is utilized to transform the governing equation into the hyperbolic conservation forms at each of the DVO points. The corresponding numerical schemes are constructed, especially the forward-backward MacCormack predictor-corrector method for the convection term in the molecular velocity space, which is unlike the original type. Some typical numerical examples are conducted to test the present new algorithm. The results obtained by the relevant direct simulation Monte Carlo method, Euler/Navier-Stokes solver, unified gas-kinetic scheme, and moment methods are compared with the numerical analysis solutions of the present GKUA, which are in good agreement, demonstrating the high accuracy of the present algorithm. Besides, some anomalous features in these flows are observed and analyzed in detail. The numerical experience indicates that the present GKUA can provide potential applications for the simulations of the nonequilibrium external-force driven flows, such as the gravity, the electric force, and the Lorentz force fields covering all flow regimes.  相似文献   

13.
To assess the plume effects of space thrusters, the accurate plume flowfield is indispensable. The plume flow of thrusters involves both continuum and rarefied flow regimes. Coupled Navier–Stokes–Direct Simulation Monte Carlo (NS–DSMC) method is a major approach to the simulation of continuum‐rarefied flows. An axisymmetric coupled NS–DSMC solver, possessing adaptive‐interface and two‐way coupling features, is investigated in this paper for the simulation of the nozzle and plume flows of thrusters. The state‐based coupling scheme is adopted, and the gradient local Knudsen number is used to indicate the breakdown of continuum solver. The nitrogen flows in a conical nozzle and its plume are chosen as the reference case to test the coupled solver. The threshold value of the continuum breakdown parameter is studied based on both theoretical kinetic velocity sampling and coupled numerical tests. Succeeding comparisons between coupled and full DSMC results demonstrate their conformities, meanwhile, the former saves 58.8% computational time. The pitot pressure evaluated from the coupled simulation result is compared with the experimental data proposed in literatures, revealing that the coupled method makes precise predictions on the experimental pitot pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
三维非结构网格DSMC方法的实现及其应用   总被引:1,自引:0,他引:1  
研究了三维非结构网格DSMC方法实现的过程。将Bird位置元方案中的子网格思想引入到非结构网格上来,只存储子网格的总体标识号,利用较少的计算网格提高了分子的分辨率与计算精度。提出了将体积元坐标搜索算法与交替数字二叉树搜索算法(ADT)相结合的方法来跟踪模拟分子在网格之间的迁移,使用ADT方法判别分子与物面是否作用,避免了分子表面反射的非确定论判据。利用Fortran 90的动态分配内存技术编制了通用计算程序。最后对高超声速过渡流域航天飞机头部外形绕流进行了数值模拟,数值结果初步验证了算法的可行性。  相似文献   

15.
ABSTRACT

This paper outlines the implementation and performance of a parallelisation approach involving partitioning of both physical space and velocity space domains for finite element solution of the Boltzmann-BGK equation. The numerical solver is based on a discontinuous Taylor–Galerkin approach. To the authors' knowledge this is the first time a ‘high order’ parallelisation, or `phase space parallelisation', approach has been attempted in conjunction with a numerical solver of this type. Restrictions on scalability have been overcome with the implementation detailed in this paper. The developed algorithm has major advantages over continuum solvers in applications where strong discontinuities prevail and/or in rarefied flow applications where the Knudsen number is large. Previous work by the authors has outlined the range of applications that this solver is capable of tackling. The paper demonstrates that the high order parallelisation implemented is significantly more effective than previous implementations at exploiting High Performance Computing architectures.  相似文献   

16.
Gas Kinetic Method‐based flow solvers have become popular in recent years owing to their robustness in simulating high Mach number compressible flows. We evaluate the performance of the newly developed analytical gas kinetic method (AGKM) by Xuan et al. in performing direct numerical simulation of canonical compressible turbulent flow on graphical processing unit (GPU)s. We find that for a range of turbulent Mach numbers, AGKM results shows excellent agreement with high order accurate results obtained with traditional Navier–Stokes solvers in terms of key turbulence statistics. Further, AGKM is found to be more efficient as compared with the traditional gas kinetic method for GPU implementation. We present a brief overview of the optimizations performed on NVIDIA K20 GPU and show that GPU optimizations boost the speedup up‐to 40x as compared with single core CPU computations. Hence, AGKM can be used as an efficient method for performing fast and accurate direct numerical simulations of compressible turbulent flows on simple GPU‐based workstations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann–Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integration method can be developed and adopted to attack complex flows with different Mach numbers. HPF parallel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarily with massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuille- channel flow and pressure-driven gas flows in two-dimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of micro-scale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). The project supported by the National Natural Science Foundation of China (90205009 and 10321002), and the National Parallel Computing Center in Beijing. The English text was polished by Yunming Chen.  相似文献   

18.
一类非线性奇异积分方程及其数值方法研究   总被引:1,自引:0,他引:1  
探讨了一类非线性奇异积分方程的数理性质以及在颗粒雷诺数Rep<1时此类方程解的存在条件,然后详细研究了该方程的数值计算方法并构造称之为P(EC)^k多步法的差分格式,分析了该格式的收敛性和代数精度,得到时域离散步长的约束关系。运用该格式计算了静止流场和均匀振荡流中球形小颗粒的非恒定运动,将计算结果与其解析解及有关实验数据的比较表明,上述数值方法具有良好的计算精度。  相似文献   

19.
D. Q. Xu  H. Honma  T. Abe 《Shock Waves》1993,3(1):67-72
The direct simulation Monte Carlo (DSMC) method is applied to simulation of nonstationary Mach reflection of strong shock waves. Normally the DSMC method is very time consuming in solving unsteady flow field problems especially for high Mach numbers, because of the necessity of iterative calculations to eliminate the inherent statistical fluctuation caused by a finite sample size. A central weighted smoothing technique is introduced to process the DSMC results, so that the iteration time can be significantly reduced. In spite of some relaxations of the shock wave structure, the smoothing technique is verified to be useful to estima te the flow fields qualitatively and even quantitatively by using a relatively small sample size. The comparison between the present approach and the kineticmodel approach (Xu et al. 1991a, 1991b) on the application to unsteady rarefied flow fields was also carried out.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号