首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new class of highly fluorescent and stable carbazole-based dendrimers (1-5) that contain the ethynylbenzene and diethynylbenzene cores has been synthesized and characterized. They show very high extinction coefficients of absorption (A(max) approximately 328-353 nm) and high quantum yields of fluorescence (lambda(max) approximately 386-437 nm; Phi(F) approximately 0.72-0.89; tau(F) approximately 2.09-3.91 ns) in dichloromethane. The quantum yields of fluorescence of 1-5 in the solid state are equally high (lambda(max) approximately 385-422 nm; Phi(F) approximately 0.40-0.85). These data indicate their potential use as blue-emitting materials in organic light-emitting diodes (OLEDs).  相似文献   

2.
1,3-Bis(1-pyrazolyl)-5-methyl-benzene, HL(2), undergoes cyclometalation at the C(2) position upon reaction with K(2)PtCl(4), to generate an N=C=N-coordinated complex, PtL(2)Cl. This compound is luminescent in degassed solution at 298 K, emitting in the blue region of the spectrum on the microsecond time scale (lambda(max) = 453 nm, tau = 4.0 micros, Phi(lum) = 0.02, in CH(2)Cl(2)). Compared to the analogous complex Pt(dpyb)Cl that incorporates pyridyl rather than pyrazole rings {dpybH = 1,3-di(2-pyridyl)-benzene}, the excited state is displaced to higher energy by 1700 cm(-1). This effect is rationalized in terms of the poorer pi-acceptor nature of pyrazolyl compared to pyridyl rings, leading to destabilization of the lowest unoccupied molecular orbital, which is largely localized on the heteroaromatic rings in both cases. Cyclic voltammetry and density functional theory calculations reinforce this interpretation, and suggest that the lowest-energy excited state is probably best described as heavily mixed pi(L)/d(Pt)/p(Cl) --> pi*(L) (IL/MLCT/LLCT) in character. 5-Aryl-substituted analogues of HL(2) are accessible in three steps from 1,3,5-tribromobenzene by Pd-catalyzed cross-coupling with aryl boronic acids, followed by copper-catalyzed bromo-iodo exchange, and subsequent amination with pyrazole under relatively mild conditions also catalyzed by copper. The corresponding Pt(II) complexes display red-shifted and more intense luminescence compared to PtL(2)Cl. Ligands incorporating one pyrazole and one pyridyl ring are also accessible; for example, 1-(1-pyrazolyl)-3-(2-pyridyl)benzene, HL(6). Their complexes are highly luminescent in solution; for example, for PtL(6)Cl, lambda(max) = 487 nm, tau = 6.9 micros, Phi(lum) = 0.55, in dilute solution in CH(2)Cl(2). At elevated concentrations, PtL(6)Cl displays an additional excimeric emission band that is substantially blue-shifted compared to that displayed by Pt(dpyb)Cl (bands centered at 645 and 695 nm, respectively), indicating that the presence of the pyrazole ring destabilizes the excimer. The introduction of a methyl substituent into the central aryl ring of such complexes is sufficient to eliminate the excimer emission.  相似文献   

3.
The synthesis and photophysical properties are described for a series of porphyrin, phthalocyanine and pyrazinoporphyrazine derivatives which bear four or eight peripheral fluorenyl substituents as antennae. Representative examples are 5,10,15,20-tetra(9,9-dihexyl-9H-fluoren-2-yl)porphyrin (2), 5,10,15,20-tetrakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]porphyrin (3), 2,3,9,10,16,17,23,24-octakis(9,9-dihexyl-9H-fluoren-2-yl)-29H,31H-phthalocyanine (8) and 2,3,9,10,16,17,23,24-octakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]-29H,31H-tetrapyrazinoporphyrazine (9). Palladium-mediated Suzuki-Miyaura cross-coupling reactions have been key steps for attaching the substituents. The compounds are deep-red emitters: lambda(max)(em)=659 (3), 737 (8) and 684 nm (9). Their absorption and emission spectra, their fluorescence lifetimes and quantum yields are correlated with the structures of the macrocycles and the substituents. The solution fluorescence quantum yields of porphyrin derivatives substituted with fluorene (2-4) and terphenyl substituents (7) (Phi(f)=0.21-0.23) are approximately twice that of tetraphenylporphyrin. For phthalocyanine derivative 8, Phi(f) was very high (0.88). Specific excitation of the fluorene units of 8 produced emission from both of them (lambda(max)=480 nm) and also from the phthalocyanine core (lambda(max)=750 nm), indicating a competitive rate of energy transfer and radiative decay of the fluorenes. Organic light-emitting devices (OLEDs) were made by spin-coating techniques by using a polyspirobifluorene (PSBF) copolymer as the host blended with 3 (5 wt. %) in the configuration ITO/PEDOT:PSS/PSBF copolymer:3/Ca/Al. Deep-red emission (lambda(max)=663 nm; CIE coordinates x=0.70, y=0.27) was observed with an external quantum efficiency of 2.5 % (photons/electron) (at 7.5 mA cm(-2)), a low turn-on voltage and high emission intensity (luminance) of 5500 cd m(-2) (at 250 mA/ m(2)).  相似文献   

4.
The remarkable luminescence properties of the platinum(II) complex of 1,3-di(2-pyridyl)benzene, acting as a terdentate N=C=N-coordinating ligand cyclometalated at C2 of the benzene ring ([PtL(1)Cl]), have been investigated, together with those of two new 5-substituted analogues [PtL(2)Cl] and [PtL(3)Cl] [HL(2) = methyl-3,5-di(2-pyridyl)benzoate; HL(3) = 3,5-di(2-pyridyl)toluene]. All three complexes are intense emitters in degassed solution at 298 K (lambda(max) 480-580 nm; phi(lum) = 0.60, 0.58, and 0.68 in CH(2)Cl(2)), displaying highly structured emission spectra in dilute solution, with lifetimes in the microsecond range (7.2, 8.0, and 7.8 micros). On the basis of the very small Stokes shift, the highly structured profiles, and the relatively long lifetimes, the emission is attributed to an excited state of primarily (3)pi-pi character. At concentrations >1 x 10(-)(5) M, structureless excimer emission centered at ca. 700 nm is observed. The X-ray crystal structure of [PtL(2)Cl] is also reported.  相似文献   

5.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

6.
The electronic absorption spectrum of fac-[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im-->phen) and metal-to-ligand charge-transfer (MLCT, Mn-->phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readily trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(*+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.  相似文献   

7.
Kang Y  Seward C  Song D  Wang S 《Inorganic chemistry》2003,42(8):2789-2797
To investigate the luminescent and thermal properties of organic compounds with rigid entities, a series of new blue/purple luminescent bridging ligands, 4,4'-(N-7-azaindolyl)diphenylacetylene (5), 4-(N-7-azaindolyl)-4'-(2,2'-dipyridylamino)diphenylacetylene (6), 4,4'-(2,2'-dipyridylamino)diphenylacetylene (7), and 4,4'-(dipyridylamino)diphenylbutadiyne (8) have been synthesized through Pd-mediated Sonogashira coupling. The structures of compounds 6 and 8 were determined by single-crystal X-ray diffraction analyses. Compounds 5-8 are luminescent in solution at room temperature, with emission lambda(max) = 361, 382, 386, and 405 nm, respectively. At 77 K, compounds 5-8 exhibit both fluorescent and phosphorescent emission. The 2,2'-dipyridylamino symmetrically substituted ligand 7 forms a linear dinuclear complex 9 with zinc(II) ions, in which the two pyridyl rings of the dipyridylamino portion are chelated to the metal center. However, with Ag(I) ions, ligand 7 forms a dinuclear complex (10), which displays a macrocyclic structure with only one of the two pyridyl rings from each dipyridylamino portion being coordinated to the silver atom. Both 9 and 10 exhibit luminescence in the near-UV region in CH(2)Cl(2) at room temperature with lambda(max) = 385 and 384 nm, respectively. The fluorescence of 7 can be partially quenched by either Zn(2+) or H(+). The behavior of ligands 8 toward Ag(I) and Zn(II) ions is similar to that of 7.  相似文献   

8.
In this report, we describe the reversible dioxygen reactivity of ((6)L)Fe(II) (1) [(6)L = partially fluorinated tetraphenylporphyrin with covalently appended TMPA moiety; TMPA = tris(2-pyridylmethyl)amine] using a combination of low-temperature UV-vis and multinuclear ((1)H and (2)H) NMR spectroscopies. Complex 1, or its pyrrole-deuterated analogue ((6)L-d(8))Fe(II) (1-d(8)), exhibits downfield shifted pyrrole resonances (delta 28-60 ppm) in all solvents utilized [CH(2)Cl(2), (CH(3))(2)C(O), CH(3)CN, THF], indicative of a five-coordinate high-spin ferrous heme, even when there is no exogenous axial solvent ligand present (i.e., in methylene chloride). Furthermore, ((6)L)Fe(II) (1) exhibits non-pyrrolic upfield and downfield shifted peaks in CH(2)Cl(2), (CH(3))(2)C(O), and CH(3)CN solvents, which we ascribed to resonances arising from the intra- or intermolecular binding of a TMPA-pyridyl arm to the ferrous heme. Upon exposure to dioxygen at 193 K in methylene chloride, ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 433 (Soret), 529 (sh), 559 nm] reversibly forms a dioxygen adduct [UV-vis: lambda(max) = 422 (Soret), 542 nm], formulated as the six-coordinate low-spin [delta(pyrrole) 9.3 ppm, 193 K] heme-superoxo complex ((6)L)Fe(III)-(O(2)(-)) (2). The coordination of the tethered pyridyl arm to the heme-superoxo complex as axial base ligand is suggested. In coordinating solvents such as THF, reversible oxygenation (193 K) of ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 424 (Soret), 542 nm] also occurs to give a similar adduct ((6)L)Fe(III)-(O(2)(-)) (2) [UV-vis: lambda(max) = 418 (Soret), 537 nm. (2)H NMR: delta(pyrrole) 8.9 ppm, 193 K]. Here, we are unable to distinguish between a bound solvent ligand or tethered pyridyl arm as axial base ligand. In all solvents, the dioxygen adducts decompose (thermally) to the ferric-hydroxy complex ((6)L)Fe(III)-OH (3) [UV-vis: lambda(max) = 412-414 (Soret), 566-575 nm; approximately delta(pyrrole) 120 ppm at 193 K]. This study on the O(2)-binding chemistry of the heme-only homonuclear ((6)L)Fe(II) (1) system lays the foundation for a more complete understanding of the dioxygen reactivity of heterobinuclear heme-Cu complexes, such as [((6)L)Fe(II)Cu(I)](+), which are models for cytochrome c oxidase.  相似文献   

9.
The Cr(NH(3))(5)(py)(3+) ion has been obtained by metathesis of Cr(NH(3))(5)(Me(2)SO)(3+) in pyridine, isolated as the perchlorate salt, and characterized by absorption (lambda(max) at 467, 352, and 260 nm) and emission spectra (lambda(max) at 668 nm, tau = 2.0 &mgr;s at 20 degrees C in water) and by the py aquation rate (k = 5 x 10(-)(4) s(-)(1) at 80 degrees C). Ligand-field (LF) band irradiation in acid aqueous solution (10(-)(2) M HClO(4)) induces photoaquation of py (Phi = 0.26) and NH(3) (Phi = 0.16). HPLC indicates that the latter reaction gives rise to both cis- and trans-Cr(NH(3))(4)(py)(H(2)O)(3+), with the predominance of the cis isomer. This is the first Cr(NH(3))(5)X(z+)() species where Phi(x) > Phi(NH)3: the result is compared with the predictions of various photolysis models and is taken as chemical evidence for pi-acceptance by the py ligand. The photostereochemistry is also discussed. The phosphorescence is totally quenched by Cr(C(2)O(4))(3)(3)(-) (k(q) = 2.7 x 10(9) M(-)(1) s(-)(1)), while the photoreactions are only in part. On 470-nm excitation, the Phi(py)/Phi(NH)()3 ratio is approximately 1 and approximately 2 for the unquenchable and the quenchable contributions, respectively. Such a difference, suggesting at least two reactive precursors, can be interpreted in terms of the photochemistry proceeding from either the lowest doublet and quartet excited states or, alternatively, from the (4)E and (4)B(2) states. Irradiation of the very distinct absorption of coordinated pyridine results in both doublet-state emission and loss of py and NH(3). Comparison of this photobehavior with the LF results gives an efficiency of 0.7 for conversion of the py-localized pipi states into the Cr-localized LF states, confirmed by the wavelength dependence of the relative emission yields. Some py release (Phi = 0.03) is concluded to originate in the pipi states.  相似文献   

10.
The [Cu(3)(dppm)(3)OH](BF(4))(2) cyclic cluster host is found to be luminescent at 298 K (lambda(max) = 540 nm; tau(e) = 89 +/- 9 &mgr;s; Phi(e) = 0.14 +/- 0.01) in degassed ethanol solutions and at 77 K (lambda(max) = 480 nm; tau(e) = 170 +/- 40 &mgr;s; Phi = 0.73 +/- 0.07) also in ethanol. The nature of the lowest energy excited states has been addressed theoretically using density functional theory and experimentally using UV-visible, luminescence, and polarized luminescence spectroscopy and is found to be (1,3)A(2) arising from the.(18e)(4)(7a(2))(1)(13a(1))(1) electronic configuration. The excited state geometry optimization for the model Cu(3)(PH(3))(6)OH(2+) compound in its T(1) state ((3)A(2)) has been performed using density functional theory and compared to its ground state structure. The Cu.Cu bond length is expected to decrease greatly in the excited state (calculated DeltaQ approximately 0.47 ?), in agreement with the d(10) electronic configuration. The perturbation of the photophysical properties by the addition of two guest carboxylate anions has been investigated. From the Stern-Volmer plots, the quenching constants, k(q), are 1.65 x 10(8) and 5.10 x 10(8) M(-)(1) s(-)(1) for acetate and 4-aminobenzoate, respectively, which are also proportional to the relative binding strengths of the substrates with Cu(3)(dppm)(3)OH(2+) (i.e., acetate < 4-aminobenzoate).  相似文献   

11.
The push-pull conjugated molecules 2,7-bis-(1H-pyrrol-2-yl)ethynyl-1,8-naphthyridine (BPN) and 2,7-bis(1H-indol-2-yl)ethynyl-1,8-naphthyridine (BIN) adopting daad relays of proton donors (d) and acceptors (a) form multiple hydrogen-bonding complexes with various monosaccharides that possess complementary adda sequences. Although the free BPN emits blue light at lambda(max) = 475 nm in CH(2)Cl(2), its complexation with octyl beta-d-glucopyranoside gives green fluorescence at lambda(max) = 535 nm. The excellent photophysical properties make BPN a highly sensitive probe for monitoring glucopyranoside to a detection limit of approximately 100 pM. On the other hand, the CD-silent BIN molecule binds with monosaccharides to form the CD-active multiple hydrogen-bonding complexes, which exhibit the remarkable chirality dependent helicities consistent with the prediction by the ab initio approaches. On the basis of the similar daad cleft and hence the binding property, the fluorescence and CD absorption methods in BPN and BIN, respectively, are complementary, which, in combination with computational molecular modeling, not only give a detailed insight into the structures of the receptor-saccharide complexes in solution, but also differentiate octyl beta-d-glucopyranoside from its enantiomer and other monosaccharides.  相似文献   

12.
Time-resolved UV-visible absorption spectroscopy has been coupled with UV laser flash photolysis of Cl2/RI/N2/X mixtures (R = CH3 or C2H5; X = O2, NO, or NO2) to generate the RI-Cl radical adducts in the gas phase and study the spectroscopy and reaction kinetics of these species. Both adducts were found to absorb strongly over the wavelength range 310-500 nm. The spectra were very similar in wavelength dependence with lambda(max) approximately 315 nm for both adducts and sigma(max) = (3.5 +/- 1.2) x 10(-17) and (2.7 +/- 1.0) x 10(-17) cm(2) molecule(-1) (base e) for CH3I-Cl and C2H5I-Cl, respectively (uncertainties are estimates of accuracy at the 95% confidence level). Two weaker bands with lambda max approximately 350 and 420 nm were also observed. Over the wavelength range 405-500 nm, where adduct spectra are reported both in the literature and in this study, the absorption cross sections obtained in this study are a factor of approximately 4 lower than those reported previously [Enami et al. J. Phys. Chem. A 2005, 109, 1587 and 6066]. Reactions of RI-Cl with O2 were not observed, and our data suggest that upper limit rate coefficients for these reactions at 250 K are 1.0 x 10(-17) cm(3) molecule(-1) s(-1) for R = CH3 and 2.5 x 10(-17) cm(3) molecule(-1) s(-1) for R = C2H5. Their lack of reactivity with O2 suggests that RI-Cl adducts are unlikely to play a significant role in atmospheric chemistry. Possible reactions of RI-Cl with RI could not be confirmed or ruled out, although our data suggest that upper limit rate coefficients for these reactions at 250 K are 3 x 10(-13) cm(3) molecule(-1) s(-1) for R = CH3 and 5 x 10(-13) cm(3) molecule(-1) s(-1) for R = C2H5. Rate coefficients for CH3I-Cl reactions with CH3I-Cl (k9), NO (k22), and NO2 (k24), and C2H5I-Cl reactions with C2H5I-Cl (k14), NO (k23), and NO2 (k25) were measured at 250 K. In units of 10(-11) cm(3) molecule(-1) s(-1), the rate coefficients were found to be 2k9 = 35 +/- 12, k22 = 1.8 +/- 0.4, k24 = 3.3 +/- 0.6, 2k14 = 40 +/- 16, k23 = 1.8 +/- 0.3, and k25 = 4.0 +/- 0.9, where the uncertainties are estimates of accuracy at the 95% confidence level.  相似文献   

13.
2,4,6-Triphenylpyrylium (TP(+)) forms host-guest complexes with cucurbiturils (CBs) in acidic aqueous solutions. (1)H NMR spectroscopic data indicates that complexation takes place by encapsulation of the phenyl ring at the four position within CB. Formation of the complex with CB[6] and CB[7] leads to minor shifts in the fluorescence wavelength maximum (lambda(fl)) or quantum yield (Phi(fl)). In sharp contrast, for complexes with CB[8], the emission results in the simultaneous observation of fluorescence (lambda(fl)=480 nm, Phi(fl)=0.05) and room-temperature phosphorescence (lambda(ph)=590 nm, Phi(ph)=0.15). The occurrence of room-temperature phosphorescence can be used to detect the presence of CB[8] visually in solution. Molecular modeling and MM2 molecular mechanics calculations suggest that this effect arises from locking the conformational mobility of the 2- and 6-phenyl rings as a result of CB[8] encapsulation. The remarkably high room-temperature phosphorescence quantum yield of the TP(+)@CB[8] complex has been advantageously applied to develop an electroluminescent cell that contains this host-guest complex. In contrast, analogous cells prepared with TP(+) or TP(+)@CB[7] fail to exhibit electroluminescence.  相似文献   

14.
Aiming at the high-contrast photochromic switching of fluorescence emission and its perfect nondestructive readout, a polymer film highly loaded with a specific photochromic compound, 1,2-bis(2'-methyl-5'-phenyl-3'-thienyl)perfluorocyclopentene (BP-BTE), and an excited-state intramolecular proton-transfer (ESIPT)-active compound, 2,5-bis(5'-tert-butyl-benzooxazol-2'-yl)hydroquinone (DHBO), was employed in this work. The special class of photochrome, BP-BTE, has negligible absorbance at 415 nm both in the open form and in the 365 nm photostationary state (PSS), and the ESIPT fluorophore, DHBO, emits large Stokes' shifted (175 nm; lambda(max)(abs) = 415 nm, lambda(max)(em) = 590 nm) and enhanced fluorescence (Phi(F)(powder) = 10%, Phi(F)(soln) = 2%). Bistability, high-contrast switching (on/off fluorescence switching ratio >290), nondestructive readout (over 125000 shots), and erasability were all together accomplished in this novel recording medium.  相似文献   

15.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   

16.
The structural and photophysical properties of a new series of cationic and neutral Au(I) dinuclear compounds (1 and 2, respectively) bridged by bis(diphenylphosphino)methane (dppm) and substituted benzimidazolethiolate (X-BIT) ligands, where X = H (a), Me (b), OMe (c), and Cl (d), have been studied. Monocationic complexes, [A(u2)(micro-X-BIT)(micro-dppm)](CF(3)CO(2)), were prepared by the reaction of [A(u2)(micro-dppm)](CF(3)CO(2))(2) with 1 equiv of X-BIT in excellent yields. The cations 1a-1d possess similar molecular structures, each with a linear coordination geometry around the Au(I) nuclei, as well as relatively short intramolecular Au(I)...Au(I) separations ranging between 2.88907(6) A for 1d and 2.90607(16) A for 1a indicative of strong aurophilic interactions. The cations are violet luminescent in CH(2)Cl(2) solution with a lambda(em)(max) of ca. 365 nm, assigned as ligand-based or metal-centered (MC) transitions. Three of the cationic complexes, 1a, 1b, and 1d, exhibit unusual luminescence tribochromism in the solid-state, in which the photoemission is shifted significantly to higher energy upon gentle grinding of microcrystalline samples with DeltaE = 1130 cm(-1) for 1a, 670 cm(-1) (1b), and 870 cm(-1) (1d). The neutral dinuclear complexes, [A(u2)(micro-X-BIT)(micro-dppm)] (2a-2d) were formed in good yields by the treatment of a CH(2)Cl(2) solution of cationic compounds (1) with NEt(3). 2a-2d aggregate to form dimers having substantial intra- and intermolecular aurophilic interactions with unsupported Au(I)...Au(I) intermolecular distances in the range of 2.8793(4)-2.9822(8) A, compared with intramolecular bridge-supported separations of 2.8597(3)-2.9162(3) A. 2a-2d exhibit brilliant luminescence in the solid-state and in DMSO solution with red-shifted lambda(em)(max) energies in the range of 485-545 nm that are dependent on X-BIT and assigned as ligand-to-metal-metal charge transfer (LMMCT) states based in part on the extended Au...Au...Au...Au interactions.  相似文献   

17.
18.
The 3-cyano-N-methylquinolinium perchlorate (3-CN-NMQ(+)ClO4(-))-photosensitized oxidation of phenyl alkyl sulfoxides (PhSOCR1R2R3, 1, R1 = R2 = H, R3 = Ph; 2, R1 = H, R2 = Me, R3 = Ph; 3, R1 = R2 = Ph, R3 = H; 4, R1 = R2 = Me, R3 = Ph; 5, R1 = R2 = R3 = Me) has been investigated by steady-state irradiation and nanosecond laser flash photolysis (LFP) under nitrogen in MeCN. Steady-state photolysis showed the formation of products deriving from the heterolytic C-S bond cleavage in the sulfoxide radical cations (alcohols, R1R2R3COH, and acetamides, R1R2R3CNHCOCH3) accompanied by sulfur-containing products (phenyl benzenethiosulfinate, diphenyl disulfide, and phenyl benzenethiosulfonate). By laser irradiation, the formation of 3-CN-NMQ(*) (lambda(max) = 390 nm) and sulfoxide radical cations 1(*+) , 2(*+), and 5(*+) (lambda(max) = 550 nm) was observed within the laser pulse. The radical cations decayed by first-order kinetics with a process attributable to the heterolytic C-S bond cleavage leading to the sulfinyl radical and an alkyl carbocation. The radical cations 3(*+) and 4(*+) fragment too rapidly, decaying within the laser pulse. The absorption band of the cation Ph2CH(+) (lambda(max) = 440 nm) was observed with 3 while the absorption bands of 3-CN-NMQ(*) and PhSO(*) (lambda(max) = 460 nm) were observed just after the laser pulse in the LFP experiment with 4. No competitive beta-C-H bond cleavage has been observed in the radical cations from 1-3. The C-S bond cleavage rates were measured for 1(*+), 2(*+), and 5(*+). For 3(*+) and 4(*+), only a lower limit (ca. >3 x 10(7) s(-1)) could be given. Quantum yields (Phi) and fragmentation first-order rate constants (k) appear to depend on the structure of the alkyl group and on the bond dissociation free energy (BDFE) of the C-S bond of the radical cations determined by a thermochemical cycle using the C-S BDEs for the neutral sulfoxides 1-5 obtained by DFT calculations. Namely, Phi and k increase as the C-S BDFE becomes more negative, that is in the order 1 < 5 < 2 < 3, 4, which is also the stability order of the alkyl carbocations formed in the cleavage. An estimate of the difference in the C-S bond cleavage rate between sulfoxide and sulfide radical cations was possible by comparing the fragmentation rate of 5(*+) (1.4 x 10(6) s(-1)) with the upper limit (10(4) s(-1)) given for tert-butyl phenyl sulfide radical cation (Baciocchi, E.; Del Giacco, T.; Gerini, M. F.; Lanzalunga, O. Org. Lett. 2006, 8, 641-644). It turns out that sulfoxide radical cations undergo C-S bond breaking at a rate at least 2 orders of magnitude faster than that of corresponding sulfide radical cations.  相似文献   

19.
Both the neurotransmitter serotonin and the unnatural amino acid 5-hydroxytryptophan (5HT), contain the 5-hydroxyindole chromophore. The photochemistry of 5HT is being investigated in relation to the multiphoton excitation of this chromophore to produce a characteristic photoproduct with green fluorescence ('hyperluminescence'). Laser flash photolysis (308 nm) of 5HT in aqueous solution at neutral pH produces both the neutral 5-indoloxyl radical (lambda(max) 400-420 nm) and another transient absorption with lambda(max) 480 nm and lifetime of 2 micros in deaerated solutions. Based on quenching by oxygen and beta-carotene, the species at 480 nm is identified as the triplet excited state of 5HT. In acidic solution a new oxygen-insensitive intermediate with lambda(max) 460 is assigned to the radical cation of 5HT. Time-resolved measurements of luminescence at 1270 nm have shown that the triplet state of 5HT is able to react with oxygen to form singlet excited oxygen (1O2*) with a quantum yield of approximately 0.1. However, 5HT has also been found to be an effective quencher of singlet oxygen with a second order rate constant of 1.3 x 10(8) dm3 mol(-1) s(-1). The results are discussed in the light of recent observations on the multiphoton-excited photochemistry of serotonin.  相似文献   

20.
A series of amide-based molecular knots equipped selectively with fluorescent dansyl and/or pyrenesulfonyl moieties were synthesized from the readily available tris(allyloxy)knotane. UV/Vis absorption spectra, emission spectra, and the emission lifetimes of the fluorescent knotanes were investigated in chloroform at 298 K. The absorption spectra of the knotanes correspond to those of mixtures of their UV-active constituents. The fluorescence quantum yields and lifetimes of the dansyl and pyrenesulfonyl moieties are partly quenched by the knotane platform. In the KN(Da)(2)(Py) species, the fluorescent excited state of the dansyl units (lambda(max)=510 nm) lies at lower energy than the fluorescent excited state of the pyrenesulfonyl unit (lambda(max)=385 nm), the emission of which is accordingly quenched with sensitization of the dansyl fluorescence. In the KN(Ao)(2)(Da), KN(Ao)(Da)(2), and KN(Da)(3) species, the addition of acids causes the protonation of their dansyl units with a consequent decrease in the intensity of the dansyl band at 510 nm and appearance of the emission band of the protonated dansyl unit (lambda(max)=340 nm). Each dansyl unit of KN(Ao)(Da)(2) and KN(Da)(3) undergoes the independent protonation. In these incompletely protonated knotanes the fluorescence of the protonated dansyl units is partly quenched by nonprotonated ones. These processes can be quantitatively reversed upon addition of a base. In KN(Da)(2)(Py), an increase of the fluorescence of its pyrenesulfonyl group is observed when the dansyl groups are protonated. The results obtained show that the readily available and easily functionalizable amide-knotanes can be used as an interesting scaffold to obtain fluorescent switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号