首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The interaction between self-aggregated porphyrins such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and 5,10,15,20-tetrakis(4-phosphonatophenyl)porphyrin (TPPP), and a generation 5 (G5) PAMAM dendrimer template is governed by minute differences of porphyrin acido-basic properties. While at neutral pH both monomeric TPPS and TPPP form complexes with G5, decreasing pH did not lead to porphyrin ring protonation (pK(a) approximately 5) but rather to the preferential formation of H-aggregates (probably H-dimers), most likely due to protonation of the G5. Upon further acidification of the solution, this face-to-face orientation of the porphyrin units is being converted to edge-to-edge aligned J-aggregates with a tightly defined structure. This process starts by protonation of the porphyrin ring at pH below 2.3 and 2.8 for TPPS and TPPP, respectively. The AFM imaging of porphyrin/G5 nanostructures obtained at pH 0.7 shows the formation of long nanorods of TPPS with partially aggregated G5 and small aggregates of TPPP connected to individual G5 molecules.  相似文献   

2.
Long-chain hydrosulfides containing two secondary amide functions and either electron-poor or electron-rich carbon-carbon double bonds were self-assembled on gold surfaces around a flat-lying, octaanionic porphyrin. Rigid and reactive surface monolayers with 2 nm-wide, porphyrin-based gaps were thus obtained. The gold electrodes were then immersed in water, and the double bonds on the gaps' surfaces reacted with methylamine. It was added to the double bonds either by Michael addition or by bromination with hypobromite followed by methylamine substitution. Only the double bonds at the border of the gaps were accessible to methylamine dissolved in the bulk water volume and could react. The walls of the rigid membrane gaps now contained methylammonium groups at the sites of the double bonds in defined heights. A tetracationic copper(II) porphyrinate could not diffuse any more into the gap and did not quench the fluorescence of the octaanionic porphyrin on the bottom of the gap. A tetraanionic porphyrin, on the other hand, was fixated by the ring of ammonium groups. The bound porphyrin then acted as molecular cover for the gap with respect to ferricyanide transport from bulk water to the electrode. It was removed by raising the pH to a value of 12, where the methylammonium groups were neutralized to amines. Lowering the pH to 7 again and addition of more of the anionic porphyrin reclosed the gap.The porphyrin "cover" should be localized at distances of 8-10 and 20 A from the bottom porphyrin by multiple charge interactions. The 8-10 A distance is ideal for studies of photoinduced electron transfer between two porphyrin monomers of different redox potential. Furthermore it was found, that redox-active tyrosine could be trapped in the water volume above the porphyrin on gold.  相似文献   

3.
Raman and IR spectra of the free base p-sulfonatophenyl and phenyl meso-substituted porphyrins [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4); 5,10,15-tris(4-sulfonatophenyl)-20-phenyl-porphyrin (TPPS3); 5,10-bis(4-sulfonatophenyl)-15,20-diphenylporphyrin (TPPS2A); 5,15-bis(4-sulfonatophenyl)-10,20-diphenylporphyrin (TPPS2O); and 5-(4-sulfonatophenyl)-10, 15,20-trisphenylporphyrin (TPPS1)] and their N-diprotonated derivatives (porphyrin diacids) were studied. The Raman spectra of the deuterated analogues of these porphyrins, in which the central hydrogen atoms were substituted with deuterium, were also measured. The observed vibrational bands were assigned on the basis of the deuteration shifts and compared with the structural analogues of these compounds. In IR spectra of the free-base porphyrins, the p-sulfonation of phenyl groups results in evident alteration for the phenyl modes and the porphyrin skeleton modes that are strongly coupled with phenyl vibrations. While the p-sulfonation of phenyl groups causes only slight changes for the high-frequency Raman bands (> 850 cm(-1)), dramatic shifts and band splitting were observed in the low-frequency region (< 500 cm(-1)) of Raman spectra. The observed differences of low-frequency Raman spectra were attributed to the alteration of the structure of the porphyrin ring, especially the CalphaCmCalpha bond-angles, by different meso-sulfonatophenyl substitutions. In addition, different packing style of TPPSn molecules in the aggregates is also responsible for the alteration of the vibrational spectra of the aggregated TPPSn.  相似文献   

4.
The water-soluble manganese(III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (Mn(III)TEPyP) and manganese(III) meso-(tetrakis(4-sulfonato-phenyl)) porphyrinate (Mn(III)TPPS) are able to chemically distinguish between HNO and NO donors, reacting with the former in a fast, efficient, and selective manner with concomitant formation of the {MnNO}(7) complex (k(on(HNO)) approximately equal to 10(5) M(-1) s(-1)), while they are inert or react very slowly with NO donors. DFT calculations and kinetic data suggest that HNO trapping is operative at least in the case of Mn(III)TPPS, while catalytic decomposition of the HNO donors (sodium trioxodinitrate and toluene sulfohydroxamic acid) seems to be the main pathway for Mn(III)TEPyP. In the presence of oxygen, the product Mn(II)TEPyP(NO) oxidizes back to Mn(III)TEPyP, making it possible to process large ratios of nitroxyl donor with small amounts of porphyrin.  相似文献   

5.
Fluorescence quenching of meso-tetrakis-4-sulfonatophenyl (TPPS(4)) and meso-tetrakis-4-N-methylpyridil (TMPyP) porphyrins is studied in aqueous solution and upon addition of micelles of sodium dodecylsulfate (SDS), cetyltrimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (K(D)) and static (K(S)) quenching. K(S) was significantly smaller than K(D). Frequency-domain fluorescence lifetimes allowed estimating bimolecular quenching constants, k(q). At 25 degrees C, in aqueous solution, TMPyP shows k(q) values a factor of 2-3 higher than the diffusional limit. TPPS(4) shows collisional quenching with pH dependent k(q) values. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for HPS and almost no change is seen for Triton X-100. Similar data were obtained at 50 degrees C. For CTAC-TPPS(4) system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and I(-), and repulsion between SDS and I(-), enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS(4) in Triton X-100 is consistent with strong binding as reported in the literature.  相似文献   

6.
Iron(II) porphyrin nitrosyl complexes are obtained in high yields from the reaction of iron(III) porphyrins with the nitroxyl donors sodium trioxodinitrate and toluensulfohydroxamic acid. The reaction was found to proceed both in organic solvents and in aqueous media from iron(III) (meso-tetraphenyl) porphyrinate ([FeIII(TPP)]+) and iron(III) meso-tetrakis (4-sulfonatophenyl) porphyrinate ([FeIII(TPPS)]3-) or iron(III) protoporphyrin IX, respectively. The kinetic rate constant for the reaction of ([FeIII(TPPS)]3-) with sodium trioxodinitrate (kon) was estimated to be 1.00 +/- 0.04 x 107 M-1 s-1. As well as resulting in a versatile method for obtaining ferrous nitrosyl porphyrins, the reaction points at ferric porphyrins as efficient nitroxyl traps and provides a tool to model nitroxyl reactivity toward hemeproteins.  相似文献   

7.
Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs. NHE for MnTTEG-2-PyP5+ and E1/2 = + 412 mV vs. NHE for MnTDTEG-2-ImP5+. As expected, from established E1/2 vs. log kcat(O2 *-) structure-activity relationships for metalloporphyrins (Batinic-Haberle et al., Inorg. Chem., 1999, 38, 4011), both compounds exhibit higher SOD-like activity than any meso-substituted Mn(III) porphyrins-based SOD mimic thus far, log kcat = 8.11 (MnTTEG-2-PyP5+) and log kcat = 8.55 (MnTDTEG-2-ImP5+), the former being only a few-fold less potent in disproportionating O2*- than the SOD enzyme itself. The new porphyrins are stable to both acid and EDTA, and non toxic to E. coli. Despite elongated substituents, which could potentially lower their ability to cross the cell wall, MnTTEG-2-PyP5+ and MnTDTEG-2-ImP5+ exhibit similar protection of SOD-deficient E. coli as their much smaller ethyl analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+, respectively. Consequently, with anticipated increased blood-circulating half-life, these new Mn(III) porphyrins may be more effective in ameliorating oxidative stress injuries than ethyl analogues that have been already successfully explored in vivo.  相似文献   

8.
π-A isotherms, ellipsometric measurements, Brewster angle microscopy (BAM) and reflection spectroscopy have been utilized to characterize the films of an amphiphilic porphyrin ((OD)(3)TPPS(3)) at the air-water interface as a function of pH. This porphyrin forms stable mono-molecular layers at such interfaces, and exhibits different J-aggregation as a function of pH. The J-aggregation of (OD)(3)TPPS(3) on neutral pH subphases is notable considering that the nitrogen atoms at the central macrocycle have a pK(a)≈4.9. The type of aggregates at neutral pH is like those detected at pH<4, because the central porphyrin ring is already protonated. However at basic pH the aggregation happens without protonation of the central ring but can be instead controlled by application of the surface pressure. At the air-water interface, (OD)(3)TPPS(3) shows two bands, a red component and a blue component, which have characteristics of non-degenerate linear oscillators being perpendicularly polarized between each other. The spectral behavior observed on subphases at different pHs is qualitatively interpreted by means of exciton coupling theory, assuming that the degenerate transitions attributed to the Soret band are split. Additionally, highly oriented molecular films of these J-aggregates were deposited onto transparent quartz slides.  相似文献   

9.
Total imernal reflection fluorescence spectroscopy (TIRF) and synchronous scanning technique were combined to study the adsorption behavior of the meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS) at the glass-water interface without any surfactant. The pH dependence of synchronous fluorescence signal at the interface was analyzed. Both unprotonated (TPPS^4-) and diprotonated (H2TPPS^2-) forms of TPPS were observed at the interface. But the interface favored the adsorption of. The apparent estimated pKa2 value shifted from 5.00 in the bulk solution to 2.7 at the interface. STIRF provides a good technique to study multi-component systems at the interface.  相似文献   

10.
Abstract Porphyrins, which may be introduced into the eye as a result of abnormal porphyrin metabolism (uroporphyrin–Uro) or when used in the diagnosis or photodynamic therapy of certain tumors, including intraocular tumors (hematoporphyrin–Hp and'hematoporphyrin derivative'–Hpd and mesotetra( P -sulfonatophenyl)porphyrin–TPPS) are efficient photosensitizers in biological systems. We have been studying the potential phototoxic side effects of these drugs in the lens of the eye. Encapsulated in the human lens is a mixture of soluble protein crystallins. With little turnover of protein in the lens, any photosensitized modifications will accumulate and may result in an opacification of the lens. To evaluate the potential of different porphyrins to induce such damage, a series of porphyrins were photolyzed (transmission above 295 nm) in the presence of calf lens protein (2 mg m−1). Marked photopolymerization and histidine destruction were observed for the lens protein photolyzed in the presence of all of the drugs. We have found that the relative effectiveness of the following porphyrins to induce that damage is: Uro = TPPS Hpd = Hp. Both the singlet oxygen quencher, azide, and the free radical scavenger, penicillamine, decrease this photosensitized oxidative damage to lens protein. TPPS binds significantly to lens protein and this binding leads to conformational changes in that protein.  相似文献   

11.
本文用荧光光谱法初步研究了卟啉与金属离子配位反应机理和部分催化剂的催化机理.实验发现,在一定条件下,卟啉以一种与其主要存在形式不同的变形体H2P*存在,根据H2P*的存在和产生的条件,对卟啉与金属离子配位反应的一般条件作出了较为满意的阐述.  相似文献   

12.
通过四苯基卟啉(H2TPP)和浓硫酸发生磺化反应及其金属化, 控制反应体系pH并利用透析法纯化, 高效合成了水溶性四(对磺酸钠苯基)卟啉(H2TPPS)及其金属配合物(FeTPPS和ZnTPPS); 采用UV-Vis、荧光、1H NMR和FTIR等光谱手段表征及研究了水溶性卟啉的结构及性质. 结果表明, 磺酸根离子的存在增强了卟啉分子间的π-π作用, 从而使H2TPPS及其金属配合物的分子间聚合作用增强. 研究了FeTPPS对2,4,6-三氯苯酚(TCP)催化氧化脱氯反应, 结果表明, FeTPPS/H2O2催化体系对TCP具备很好的催化氧化脱氯性能, 2,6-二氯对苯醌的转化数达到了766.  相似文献   

13.
Thirty-two glycoconjugated porphyrins were synthesized by a modification of Lindsey method in the presence of Zn(OAc)(2).2H(2)O as a template. The Zn(2+) ion template strategy improved the yield about three-fold in the case of meta-substituted tetraphenylporphyrins. In addition, free-base porphyrins were obtained almost quantitatively by demetalation with 4 M HCl. Sixteen deacetylated glycoconjugated porphyrins were tested as candidate photodynamic therapy (PDT) drugs using HeLa cells. Most of the deacetylated glycoconjugated porphyrins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[4-(beta-D-arabinopyranosyloxy)phenyl]porphyrin (p-5d) in particular showed 18.5-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[4-(beta-D-glucopyranosyloxy)phenyl]porphyrin (p-5a), p-5d and TPPS was examined with HeLa cells, using a light dose of 16 J/cm(2). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity increased in the order of TPPS < p-5a < p-5d. These results suggest p-5d is a good candidate for a PDT drug.  相似文献   

14.
Previous steady state and time resolved spectroscopic studies on porphyrins have shown that the triplet lifetimes of those sensitizers that bind to lens proteins are lengthened by several orders of magnitude. Presented here is an extension of this experiment to measure these transients in an intact bovine lens. As demonstrated by steady state fluorescence spectroscopy and flash photolysis, mesotetra (p-sulfonatophenyl)porphyrin (TPPS) binds to lens proteins. In air-saturated aqueous solution, TPPS has a triplet lifetime of 2 microseconds. In an intact bovine lens the triplet state decayed via biexponential kinetics with lifetimes of 0.16 and 1.6 microseconds. In addition to a lengthening of the lifetime there was a red shift in the triplet transient spectra of 10-20 nm of the porphyrin in the intact lenses.  相似文献   

15.
5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin was functionalized by covalent attachment of poly(ethylene glycol) (PEG) chains of various molecular weights, 350, 2000, and 5000 Da. The properties of PEG-functionalized tetraarylporphyrins in aqueous solution and their interactions with liposomes have been studied. Electronic absorption spectroscopy, dynamic light scattering, atomic force microscopy, and fluorescence quenching were used to monitor aggregation of porphyrin chromophores and behavior of the attached PEG chains in the aqueous solution. The tendency for aggregation of porphyrin chromophores in aqueous solution and the efficiency of fluorescence quenching by KI decrease with increasing length of PEG chain linked to the porphyrin ring. The experimental results indicate that polymer clusters are present in aqueous solution of all pegylated porphyrins. The interactions between the pegylated porphyrins and phosphatidylcholine liposomes in the aqueous solution were studied using the fluorescence methods. The apparent binding constants of porphyrin chromophores to liposomes were determined. The degree of binding was found to be dependent on the molecular weight of the attached polymer.  相似文献   

16.
Abstract— Previous studies have shown that the triplet state lifetimes of various porphyrins are increased by several orders of magnitude when they are bound to lens proteins. Flash photolysis studies of me-sotetra ( p -sulfonatophenyl)porphyrin (TPPS) on intact bovine lenses indicated a biexponential decay of the triplet state with lifetimes of 160 μs and 1.6 ms. Here we extend those measurements to TPPS associated with intact human lenses. Steady-state fluorescence measurements indicate that TPPS binds to both young and old human lenses. In an intact young human lens, the TPPS triplet state is observed to decay biexponentially with lifetimes of 50 and 680 μs. As the age of the lens increases, the lifetime of the shorter-lived component lengthens while that of the longer-lived component decreases slightly. In older human lenses, the two lifetimes coalesce and the triplet decay exhibits purely monoexponential behavior. These photophysical characteristics apparently are due to age-related modification(s) of the protein in the human lens resulting in an increasingly more homogeneous environment around the porphyrin.  相似文献   

17.
A series of six Zn(II) tetraphenylporphyrins (ZnTPP), with a phenyl (P) or oligophenyleneethynylene (OPE = (PE) n ) rigid-rod bridge varying in length (9-30 A) and terminated with an isophthalic acid (Ipa) anchoring unit, were prepared as model dyes for the study of sensitization processes on metal oxide semiconductor nanoparticle surfaces (MO(n) = TiO(2), ZnO, and insulating ZrO(2)). The dyes were designed such that the electronic properties of the central porphyrin chromophore remained consistent throughout the series, with the rigid-rod anchoring unit allowing each porphyrin unit to be located at a fixed distance from the metal oxide nanoparticle surface. Electronic communication between the porphyrin and the rigid-rod unit was not desired. Rigid-rod porphyrins ZnTPP-Ipa, ZnTPP-P-Ipa, ZnTPP-PE-Ipa, ZnTPP-(PE)(2)-Ipa, ZnTPP-(PE)(3)-Ipa, and ZnTMP-Ipa (with mesityl substituents on the porphyrin ring) were synthesized using combinations of mixed aldehyde condensations and Pd-catalyzed cross-coupling reactions. Their properties, in solution and bound, were compared with that of Zn(II) 5,10,15,20-tetra(4-carboxyphenyl)porphyrin ( p-ZnTCPP) as the reference compound. Solution UV-vis and steady-state fluorescence spectra for all six rigid-rod-Ipa porphyrins were almost identical to each other and to that of p-ZnTCPP. Cyclic voltammetry and differential pulse voltammetry scans of the methyl ester derivatives of the six rigid-rod-Ipa porphyrins, recorded in dichloromethane/electrolyte, exhibited redox behavior typical of ZnTPP porphyrins, with the first oxidation in the range +0.99 to 1.09 V vs NHE. All six rigid-rod-Ipa porphyrins and p-ZnTCPP were bound to metal oxide (MO(n) = TiO(2), ZnO, and insulating ZrO(2)) nanoparticle films. The Fourier transform infrared attenuated total reflectance spectra of all compounds bound to MO n films showed a broad band at 1553-1560 cm(-1) assigned to the v(CO(2)(-)) asymmetric stretching mode. Splitting of the Soret band into two bands at 411 and 423 nm in the UV-vis spectra of the bound compounds, and broadening and convergence of both fluorescence emission bands in the fluorescence spectra of the porphyrins bound to insulating ZrO(2) were also observed. Such changes were less evident for ZnTMP-Ipa, which has mesityl substituents on the porphyrin ring to prevent aggregation. Steady-state fluorescence emission of rigid-rod-Ipa porphyrins bound to TiO(2) and ZnO through the longest bridges (>14 A) showed residual fluorescence emission, while fluorescence quenching was observed for the shortest compounds.  相似文献   

18.
Novel surface-modified hydrogel materials have been prepared by binding charged porphyrins TMPyP (tetrakis(4-N-methylpyridyl)porphyrin) and TPPS (tetrakis(4-sulfonatophenyl)porphyrin) to copolymers of HEMA (2-hydroxyethyl methacrylate) with either MAA (methacrylic acid) or DEAEMA (2-(diethylamino)ethyl methacrylate). The charged hydrogels display strong electrostatic interactions with the appropriate cationic or anionic porphyrins to give materials which are intended to be used to generate cytotoxic singlet oxygen (1O2) on photoexcitation and can therefore be used to reduce postoperative infection of the intraocular hydrogel-based replacement lenses that are used in cataract surgery. The UV/vis spectra of TMPyP in MAA:HEMA copolymers showed a small shift in the Soret band and a change from single exponential (161 micros) triplet decay lifetime in solution to a decay that could be fitted to a biexponential fit with two approximately equal components with tau = 350 and 1300 micros. O2 bubbling reduced the decay to a dominant (90%) component with a much reduced lifetime of 3 micros and a minor, longer lived (20 micros) component. With D2O solvent the 1O2 lifetime was measured by 1270 nm fluorescence as 35 micros in MAA:HEMA, compared to 67 mus in solution, although absorbance-matched samples showed similar yield of 1O2 in the polymers and in aqueous solution. In contrast to the minor perturbation in photophysical properties caused by binding TMPyP to MAA:HEMA, TPPS binding to DEAEMA:HEMA copolymers profoundly changed the 1O2 generating ability of the TPPS. In N2-bubbled samples, the polymer-bound TPPS behaved in a similar manner to TMPyP in its copolymer host; however, O2 bubbling had only a very small effect on the triplet lifetime and no 1O2 generation could be detected. The difference in behavior may be linked to differences in binding in the two systems. With TMPyP in MAA:HEMA, confocal fluorescence microscopy showed significant penetration of the porphyrin into the core of the polymer film samples (>150 microm). However, for TPPS in DEAEMA:HEMA copolymers, although the porphyrin bound much more readily to the polymer, it remained localized in the first 20 microm, even in heavily loaded samples. It is possible that the resulting high concentration of TPPS may have cross-linked the hydrogels to such an extent that it significantly reduced the solubility and/or diffusion rate of oxygen into the doped polymers. This effect is significant since it demonstrates that even simple electrostatic binding of charged porphyrins to hydrogels can have an unexpectedly large effect on the properties of the system as a whole. In this case it makes the apparently promising TPPS/DEAEMA:HEMA system a poor candidate for clinical application as a postoperative antibacterial treatment for intraocular lenses while the apparently equivalent cationic system TMPyP/MAA:HEMA displays all the required properties.  相似文献   

19.
The dynamics of aggregation of meso-tetrakis (p-sulfonatofenyl) porphyrin (TPPS4) in function of its concentration, pH and ionic strength was studied by optical absorption, fluorescence and resonance light scattering (RLS) techniques. In the region of pH, where TPPS4 exists in biprotonated form, the addition of NaCl induces the TPPS4 aggregation due to the formation of the "cloud" of counter ions around the TPPS4 molecule thus reducing electrostatic repulsion between the porphyrin molecules. The formation of this "cloud" shifts the pKa value to acid region (from 5.0 in the absence of salt to 4.5 at [NaCl] = 0.4 M), reduces the TPPS4 absorption in all spectral range and quantum yield and lifetime of fluorescence (from 0.27 to 0.17 and from 4.00+/-0.04 to 3.00+/-0.03 ns in the absence of salt and in the presence of NaCl, respectively). The aggregation process involves two successive stages: initially H aggregates are formed, which in time are transformed in J ones. The existence of these two stages was confirmed by the fluorescence and RLS data. The kinetics of the formation of J aggregates is characterized by the induction time t1 and the average growth time t2, which depend on both TPPS4 and salt concentrations. The induction period t1 appears as a result of initial formation of H aggregates and their successive transformation in J ones. At very high TPPS4 concentrations, the J aggregates are united in more complex structures such as hollow cylinders or helixes.  相似文献   

20.
The J-aggregation behavior of diprotonated tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4(2-)) in aqueous solution in the presence of the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) was investigated in detail using UV-vis absorption spectroscopy, fluorescence spectroscopy, resonance light scattering (RLS) spectroscopy, Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. With the addition of bmimBF4, increasing peaks appeared at a wavelength of 490 nm in the absorption spectra to account for the formation of H 2TPPS4(2-) J-aggregates. In addition, the experimental results also showed decreased fluorescence emission, enhanced RLS signals, intensified Raman scattering peaks, and the disappearance of NMR signals to further indicate that porphyrin J-aggregates exist in the studied system. NMR shifts of bmimBF 4 toward high field occurred corresponding to H2, H4, and H5 in the cationic imidazolium ring (bmim+), suggesting that bmim+ enters the magnetic shielding domain of the anionic phenyl sulfonate ion owing to the association process between the "large" cation and anion. Additionally, the fact that the absorption spectral shifts occurred in the nonprotonated porphyrin TPPS4(4-) further indicates the existence of the ion association effect of bmim+, which functions as an important factor in porphyrin aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号