首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sahli  S.  Rebiai  S.  Raynaud  P.  Segui  Y.  Zenasni  A.  Mouissat  S. 《Plasmas and Polymers》2002,7(4):327-340
The effects of process parameters such as O2/HMDSN (hexamethyldisilazane) ratio, microwave discharge power and deposition pressure on the growth rate, chemical bonding nature, and refractive index of thin films deposited by microwave plasma from HMDSN with oxygen, have been investigated. The plasma was created in a Microwave Multipolar reactor excited by Distributed Electron Cyclotron Resonance. The films were deposited at room temperature and characterized by Fourier Transform Infrared spectroscopy and ellipsometry. Growth rate increased with the discharge power P or the deposition pressure but decreased significantly with increasing O2/HMDSN ratio. A large change in the film composition was observed when the O2/HMDSN ratio was varied: films deposited with only HMDSN precursor are polymer-like but as the O2/HMDSN ratio increased, organic groups decreased. For relative pressure values over 70%, deposited films are SiO2-like with refractive index values close to those found for thermal silicon dioxide.  相似文献   

2.
Remarkable properties of plasma polymer films are greatly dependent not only on the chemical structure of precursor but also on the reactor design and the deposition conditions. In many industrial applications it is a challenge to control the plasma polymer structure. In this paper we investigate the chemical transformation of various aromatic compounds, such as activation and fragmentation of substituent-part, aromatic ring opening, during plasma polymerization process. Polymerized films are deposited in a low-frequency capacitively coupled plasma-enhanced chemical vapour deposition reactor, working at low pressure. The chemical composition of plasma-polymerized films is elucidated by Fourier-transform infrared spectroscopy, solid-state carbon-13 nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on spectroscopic measurements, the intermediary reactions during film growth may be presumed.  相似文献   

3.
Monochlorosilane/argon/hydrogen (SiH3Cl-Ar-H2) mixture of different ratios was investigated from the point of PECVD application. RF capacitive plasma discharge of 40.68 MHz frequency was used. The process of deposition was studied by optical emission spectroscopy. The silicon thin films of different phase composition were obtained. The thin films were characterized by Raman-spectroscopy, atomic force microscopy, and secondary ion mass spectrometry. The exhaust gas mixture was analyzed by IR-spectroscopy in outlet of the reactor during PECVD process. The chemical mechanism for the deposition process was also proposed.  相似文献   

4.
Herein, we present a simple method for fabricating plasma polymerized hexamethyldisiloxane films (pp-HMDSO) possessing superhydrophobic characteristics via arc discharge. The pp-HMDSO films were deposited on a soda–lime–silica float glass using HMDSO monomer vapor as a precursor. A detailed surface characterization was performed using scanning electron microscopy and atomic force microscopy. The growth process of the pp-HMDSO films was investigated as a function of deposition time from 30 to 300 s. The non-wetting characteristics of the pp-HMDSO films were evaluated by means of contact angle (CA) measurements and correlated with the morphological characteristics, as obtained from microscopy measurements. The deposited films were found to be nano-structured and exhibited dual-scale roughness with the static CA values close to 170°. Fourier transform infrared spectroscopy analysis was carried out to investigate chemical and functional properties of these films. Methyl groups were identified spectroscopically to be present within the pp-HMDSO films and were proposed to result in the low surface energy of material. The synergy between the dual-scale roughness and low surface energy resulted in the superhydrophobic characteristics of the pp-HMDSO films. A possible mechanism for the pp-HMDSO film formation is proposed.  相似文献   

5.
The role of plasma parameters on the film characteristics is investigated on polyaniline thin film deposited by radio frequency (RF) plasma polymerization. A series of un-doped and iodine doped polyaniline thin films are prepared by RF discharge operating at 13.56?MHz with different discharge powers and pressure variation from 0.1 to 0.05?mbar and variation in deposition time from 20 to 40?min. A good thin film is found with a power ranging from 9?W (?28?V self bias) to 20?W (?65?V self bias) at 0.1?mbar pressure which is confirmed by fourier transform infra-red spectroscopy showing the retention of aromatic rings. In addition, iodine doping is carried out with 9?W power and 0.1?mbar pressure. The characterization of process plasma is done using Langmuir probe diagnostics and optical emission spectroscopy. A correlation has been established between film characteristics and plasma properties investigated using optical emission spectroscopy and Langmuir probe analysis. Emphasis has been given on the study of the influence of plasma parameters, particularly of the electron energy distribution function on the quality of conjugated plasma polymerized aniline film.  相似文献   

6.
Borvon  G.  Goullet  A.  Granier  A.  Turban  G. 《Plasmas and Polymers》2002,7(4):341-352
Low-dielectric constant (low-k) films have been prepared by plasma-enhanced chemical vapor deposition from hexamethyldisiloxane (HMDSO). The films are analyzed by ellipsometry, infrared absorption spectroscopy while their electrical properties are deduced from C–V and I–V measurements performed on metal/insulator/silicon structures. First, it is shown that the carbon-containing silicon oxide films deposited in HMDSO and HMDSO/Ar plasmas have a dielectric constant equal to 3.0 ± 0.1 and are thermally stable at 400°C. The leakage current densities measured for an electric field of 1 MV/cm are less than 10–9 A/cm2 and the breakdown fields are in the range of 6–7 MV/cm. Then, a low-density silica film was obtained by exposing a film deposited in an HMDSO plasma to an O2 plasma. The dielectric constant of this low-density silica film is 3.5 and its breakdown field is close to 6 MV/cm.  相似文献   

7.
This paper reports on deposition of acrylic acid films polymerized by an efficient and cost‐effective technique of dielectric barrier corona discharge at atmospheric pressure. The liquid acrylic acid was vaporized and carried by argon gas into plasma to deposit polyacrylic acid films on polydimethylsiloxane substrate. A nonthermal corona discharge was generated in a pyrex flask using a steel tube‐to‐plate asymmetric electrode configuration. The plasma was excited using an in‐house developed power supply operating with continuous wave signals of 10‐kHz frequency. The emission spectra of plasma species were recorded to know their contribution during deposition process. The deposited surfaces were characterized using contact angle measurements, atomic force microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and film thickness measurements. A maximum film growth rate of 363 nm/min was achieved under optimal condition of discharge. The results suggest that this plasma technique is capable of depositing organic coatings with a high concentration of carboxylic functional groups that could be potentially used for biomedical and microfluidic applications.  相似文献   

8.
The deposition of amorphous hydrogenated carbon thin films by inductively coupled radio frequency (IC RF) pure methane plasma and its subsequent removal by IC RF pure oxygen plasma have been studied within a cylindrical glass tube. Both processes were simultaneously monitored by optical emission spectroscopy, light transmission through thin film deposits, temperature of the discharge tube and total gas pressure measurements. Comparing the time evolution of all parameters, various stages of oxygen plasma cleaning process were established. The transitions between E-mode and H-mode of plasma induced by the presence of cleaning products impurities were observed and discussed.  相似文献   

9.
The plasma enhanced chemical vapour deposition method applying atmospheric dielectric barrier discharge (ADBD) plasma was used for TiOx thin films deposition employing titanium (IV) isopropoxide and oxygen as reactants, and argon as a working gas. ADBD was operated in the filamentary mode. The films were deposited on glass. The films?? chemical composition, surface topography, wettability and aging were analysed, particularly the dependence between precursor and reactant concentration in the discharge atmosphere and its impact on TiOx films properties. Titanium in films near the surface area was oxidized, the dominating species being TiO2 and substoichiometric titanium oxides. The films exhibited contamination with carbon, as a result of atmospheric oxygen and carbon dioxide reactions with radicals in films. No relevant difference of the film surface due to oxygen concentration inside the reactor was determined. The films were hydrophilic immediately after deposition, afterwards their wettability diminished, due to chemical reactions of the film surface and chemical groups involved in the atmosphere.  相似文献   

10.
Silicon oxide films have been deposited in a RF discharge plasma using hexamethyl-disiloxane (HMDSO) and Ar/O2 or N2O. Also, aluminum oxide layers have been deposited using trimethylaluminum (TMA) and N2O or CO2. The influence of the nature and the proportion q( the oxidizing gases and file suhstrate temperature effect have been studied. As far as the films obtained with HMDSO and TMA tire concerned, the most important experimental finding is the decrease of the deposition rate with increasing substrate temperature. FTIR, ESCA, and refractive index measurements show that the decrease of the deposition rate correlates with a nearly stoichiometric film. Low negative apparent activation energies are deduced from Arrhenius plots and are representative of deposition rates controlled hr fire adsorption of radical and surface di fusivities. A kinetic rnodel shows that the rate-limiting step is the adsorption of HMDSO or TMA radicals at low temperatures while for temperatures above 250°C the oxidation reactions control the deposition rate.  相似文献   

11.
The sol–gel process is widely used for the production of powders, coatings and bulk materials. However, being a wet-chemical technique, it has certain limitations related to properties of aqueous colloidal solution, especially when applied as a coating. The most frequently used methods, such as dip- and spin-coating, are difficult to apply onto more complex substrates. In these cases, the aerosol–gel deposition method can be regarded as the solution of this problem. In the present article, a novel plasma enhanced aerosol–gel method of coatings production is presented. A novelty of this method is based on an integration of the aerosol–gel deposition of thin films and their low temperature plasma treatment. Owing to the above, all stages of the coatings production process—substrate preparation, film deposition, and its plasma treatment, can be carried out in a single reactor. The design and operational scheme of such device is presented in this work. Using this device, thin coatings were first deposited on substrates and then plasma treated. The effect of deposition and plasma discharge conditions on morphology and chemical structure of the films has been studied. It was found that plasma treatment had a substantial influence on all the examined properties of the aerosol–gel deposited coatings.  相似文献   

12.
This study demonstrated the use of quadrupole mass spectrometry and optical emission spectrometry in diagnosing the plasma in the electron cyclotron resonance chemical vapor deposition (ECRCVD) process. The effects of adjusting the main magnetic coil current and process pressure on chemical composition of the plasma and the characteristics of the epitaxial thin film in the ECRCVD system were investigated. When the main magnetic coil current increased, the deposition rate of thin film increased, with no major effect on thin film crystallization. However, when the process pressure was higher, both the deposition rate and crystallization of epitaxial thin film increased.  相似文献   

13.
Polyaniline (PANI) thin films have been prepared by applying the novel neutral and ionized cluster beam deposition (NCBD and ICBD) methods and the pulsed laser deposition (PLD) technique to the PANI samples of half-oxidized emeraldine base (EB-PANI) and protoemeraldine base forms in a high-vacuum condition. Characterization of the oxidation states and structural changes of pristine and doped thin films has been performed by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and x-ray photoelectron spectroscopy. Spectroscopic measurements demonstrate that the dominant structure of NCBD and ICBD thin films corresponds to the reduced leucoemeraldine base state, whereas the chemical composition of PLD thin films depends critically on the laser fluence and the molecular weight of PANI target. The congruent deposition is only obtained for the PLD films deposited by the laser-induced decomposition of the low-molecular-weight targets in the low to intermediate fluence regime (below 100 mJ/cm2 with a pulse duration of 7 ns). The surface morphology examined by atomic force microscopy measurements shows that the cluster and laser beams are effective in producing smooth, uniform polymeric thin films. After I2 and HCl doping, the electrical conductivities of the NCBD, ICBD, and particularly PLD thin films are increased significantly. The higher conductivity of PLD films is ascribed to higher amounts of quinoid di-imine doping sites in the EB-PANI state, and the overall structure-conductivity characteristics are consistent with the spectroscopic observations.  相似文献   

14.
Films synthesized by plasma enhanced chemical vapor deposition from a mixture of octamethyltrisiloxane and hexamethylcyclotrisiloxane have been studied regarding to their preparation, deposition, chemical composition and membrane properties according to hydrocarbon vapor selectivities of solubility.

Composition of the plasma glow discharge in neutral species has been studied by mass spectrometry whereas structural information of the deposited membranes has been extracted from Fourier transform infra-red (FTIR) spectroscopy. In the deposition conditions presented here leading to plasma-polymerized films, heavy radicals mostly contribute to their growth and their chemical composition. Depending on the precursors ratio in the plasma, i.e. linear and cyclic clusters ratio in the deposited material, solubility of selectivity against nitrogen of the deposited material varies from 50 up to 150 for hexane vapor.  相似文献   


15.
The kinetic features of polymer film deposition under dc glow-discharge conditions in a methane atmosphere have been studied over the pressure range of 40–120 Pa at a discharge current of 30–70 mA. The optical properties, chemical structure, and topology of the films have been examined by UV spectroscopy, IR spectroscopy, and atomic-force microscopy, respectively.  相似文献   

16.
Potassium tantalate (KT) thin films and powders of both K2Ta2O6 (KT pyrochlore) and KTaO3 (KT perovskite) structures were prepared by means of chemical solution deposition method using Si(111) with ZnO and MgO buffer layers as a substrate. The influence of reaction atmosphere on reaction pathway and phase composition for both KT powders, and KT thin films has been studied mainly by means of powder diffraction and infrared spectroscopy. When an oxygen flow instead of static air atmosphere has been used the process of pyrolysis in oxygen runs over much narrower temperature interval (200–300 °C), relatively to air atmosphere (200–600 °C) and almost no (in case of powders), or no (in case of thin films) pyrochlore intermediate phase has been detected in comparison with treatment in air, where the pyrochlore phase is stable at temperatures 500–600 °C (powders). KT perovskite phase starts to crystallize at temperatures 50° and 150 °C lower compared to air atmosphere in case of powders and thin films, respectively. Microstructure formed by near-columnar grains and small grains of equiaxed shape was observed in films treated in oxygen and air atmosphere, respectively.  相似文献   

17.
A low pressure arc plasma discharge from a hollow LaB(6)-cathode with up to 100 A discharge current is used to create plasmas of high density. Typical values for the electron density and temperature in PETRA ( Plasma Engineering and Technology Research Assembly) are n(e)=10(12)-10(13) cm(-3) and T(e)=5-20 eV. The ionization ratio is typically 1-10%. Optical emission spectroscopy has been applied to investigate the processes within the plasma which lead to the deposition of thin carbon films. In these experiments hydrogenated carbon films (a-C:H) have been deposited on Si-substrates by introducing hydrocarbon gases (CH(4), C(2)H(2)) into He- and Ar-plasmas. Space resolved optical emission spectroscopy using an in-situ translation mechanism of the optical fibre has been performed to measure the local concentrations of CH-radicals, carbon ions and of the excitation of He-neutrals. In addition the hydrogen liberated by the dissociation of the hydrocarbon molecules has been measured. The dissociation of the hydrocarbon molecules takes place as a localized process in the vicinity of the reactive gas inlet.  相似文献   

18.
Subnanoporosity was introduced into SiOCH-based thin films by mixing tetraethyl orthosilicate with hexamethyldisiloxane (HMDSO) in the plasma enhanced chemical vapor deposition process, and was evaluated by the variable-energy positron annihilation lifetime technique. It was found that with increasing the HMDSO fraction both porosity and pore size were enhanced, as evidenced by the decreased refractive index and increased ortho-positronium lifetime. The lifetimes from 2.0 to 6.8 ns suggested the tunable pore volumes within a range of 0.1–0.7 nm3.  相似文献   

19.
Mn4N薄膜与锂的电化学反应性能   总被引:1,自引:0,他引:1  
采用脉冲激光沉积辅助高压电离的方法在不锈钢基片上制备了Mn4N薄膜. 用充放电和循环伏安测试对该薄膜电极的电化学性能进行了表征. 该薄膜电极的首次放电容量为420 mAh•g-1, 第一次充放电不可逆容量约为50%. 采用XRD, XPS, SEM对薄膜的化学组成和表面形貌进行了表征, 并对反应机理进行了研究, 结果表明Mn4N在反应过程中转化为金属Mn和Li3N, 只有部分的Mn与Li3N参与了可逆的电化学反应.  相似文献   

20.

The atmospheric pressure radiofrequency (RF) plasma polymerization of furan was carried out with the objective of synthesizing polyfuran thin film. The structure, compositions and morphology of the plasma deposited polyfuran film were investigated by Fourier transform infrared (FTIR), atomic force microscopy (AFM), ultraviolet‐visible absorption spectroscopy (UV‐vis) and thermogravimetric analysis (TGA). The formation of polyfuran was confirmed using FTIR and UV‐visible analysis. The properties of plasma‐deposited polyfuran were compared with those of chemically synthesized polyfuran. Although the plasma deposited thin film polyfuran shows lower thermal stability than that of chemically synthesized polyfuran. It has better solubility in CHCl3, also. Thin uniform polyfuran films are obtained in plasma assisted polyfuran deposition, while particles are obtained in chemical polyfuran polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号