首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TiO2 etching characteristics and mechanisms in HBr/Ar and Cl2/Ar inductively-coupled plasmas were investigated under fixed gas-mixing ratio and bias power conditions. It was found that in both systems, an increase in gas pressure from 4 to 10 mTorr results in a non-monotonic TiO2 etching rate, while a variation of input power in the range 500–800 W causes a faster-than-linear acceleration of the etching process. Plasma diagnostics performed by Langmuir probes and zero-dimensional plasma modeling provided data on plasma parameters, steady-state densities, and fluxes of the active species on the etched surface. The model-based analysis of the etching mechanism showed that for the given set of processing parameters, the TiO2 etch kinetics correspond to the transitional regime of ion-assisted chemical reaction in which a chemical-etch pathway dominates.  相似文献   

2.
The etching mechanism of Pb(Zr,Ti)O3 (PZT) thin films in Cl2/Ar plasma was investigated through the analysis of gas mixing ratio on volume and surface chemistries. Experiments showed that PZT etch rate keeps a constant value up to 40% of Ar addition into Cl2/Ar plasma. Langmuir probe measurement showed the noticeable influence of Cl2/Ar mixing ratio on electron temperature and electron density. The modeling of volume kinetics for neutral and charged particles indicated monotonic changes of both densities and fluxes of active species such as chlorine atoms and positive ions. The analysis of surface kinetics showed that PZT etch rate behavior may be explained by the combination of spontaneous and ion-assisted etch mechanisms.  相似文献   

3.
An investigation of etching behaviors for Mo and Al2O3 thin films in O2/Cl2/Ar inductively coupled plasmas at constant gas pressure (6 mTorr), input power (700 W) and bias power (200 W) was carried out. It was found that an increase in Ar mixing ratio for Cl2/Ar plasma results in non-monotonic etching rates with the maximums of 160 nm/min at 60 % Ar for Mo and 27 nm/min at 20 % Ar for Al2O3. The addition of O2 in the Cl2/Ar plasma causes the non-monotonic Mo etching rate (max. 320 nm/min at 40–45 % O2) while the Al2O3 etching rate decreases monotonically. The model-based analysis of etching kinetics allows one to relate the non-monotonic etching rates in Cl2/Ar plasma to the change in the etching regime from the ion-flux-limited mode (at low Ar mixing ratios) to the neutral-flux-limited mode (for high Ar mixing ratios). In the Cl2/O2/Ar plasma, the non-monotonic Mo etching rate is probably due to the change in reaction probability.  相似文献   

4.
Mass spectrometry has been used to assess plasma composition during a low-energy plasma-enhanced chemical vapor deposition (LEPECVD) process using argon-silane-hydrogen (Ar-SiH4-H2) gas mixtures with input flows of 50 sccm Ar, 2–20 sccm SiH4 and 0–50 sccm H2 at total pressures of 1–4 Pa. Energy-integrated ion densities, residual gas analysis and threshold ionization mass spectrometry have been used to characterize the transition from amorphous (a-Si) to nano-crystalline silicon (nc-Si) deposition at constant LEPECVD operating parameters. While relative ion densities have a marked decrease with H2 input, the densities of SiHx (x < 4) radicals show evolution trends depending on the SiH4 and H2 input. For conditions leading to nc-Si growth a turning point is reached above which SiH is the main radical. Observed SiHx density trends with H2 input are explained based on kinetic reaction rates calculated from previously obtained Langmuir probe data.  相似文献   

5.
The reactive ion etching of GaAs, InP, InGaAs, and InAlAs in CF3Br/Ar discharges was investigated as a function of both plasma power density (0.56-1.3 W - cm–2) and total pressure (10-40 mTorr) The etch rate of GaAs in 19CF3Br:1Ar discharges at 10 m Torr increases linearly with power density, from 600 Å min–1 at 0.56 W · cm–2, to 1550 Å · min at 1.3 W · cm–2. The in-based materials show linear increases in etch rates only for power densities above – 1.0 W · cm–2. These etch rates are comparable to those obtained with CCI2F2:O2 mixtures under the same conditions. Smooth surface morphologies and vertical sidewalls are obtained over a wide range of plasma parameters. Reductions in the near-surface carrier concentration in n-type GaAs are evident for etching with power densities of >0.8 W cm–2, due to the introduction of deep level trapping centers. At 1.3 W· cm–2, the Schottky barrier height of TiPtAu contacts on GaAs is reduced from 0.74 to 0.53 eV as a result of this damage, and the photoluminescent intensity from the material is degraded. Alter RIE, we detect the presence of both F and Br on the surface of all of the semiconductors. This contamination is worse than with CCl2F2-based mixtures. High-power etching with CF3Br/Ar together with Al-containing electrodes can lead to the presence of a substantial layer of aluminum oxide on the samples if the moisture content in the reactor is appreciable.  相似文献   

6.
Plasma and electrical characteristics of an internal-type inductively coupled plasma source with a Ni–Zn ferrite module installed near the antenna were investigated for different rf power frequencies of 2 and 13.56 MHz. Due to the lower heating of the Ni–Zn ferrite module on the antenna for the operation at 2 MHz compared to the operation at 13.56 MHz, higher plasma density and lower rf rms antenna voltage were resulted for the operation at 2 MHz in addition to more stable plasma characteristics. By the application of 500 W of rf power to the source, a high plasma density of 8 × 1011 cm−3 which is about four times higher than that with 13.56 MHz could be obtained at the pressure of 10 mTorr Ar. When photoresist etch uniformity was measured for the operation with 2 MHz by etching photoresist on a 300 mm diameter substrate using 10 mTorr Ar/O2 (9:1) mixture, the etch uniformity of about 5.5% could be obtained.  相似文献   

7.
BCl3/Ar and BCl3/N2 plasma chemistries were compared for patterning of InP, InAs, InSb, InGaAs, InGaAsP, and AlInAs. Under electron cyclotron resonance conditions etch rates in excess of 1 μm/min can be achieved at room temperature with low additional rf chuck power (150 W). The etch rates are similar for both chemistries, with smoother surface morphologies for BCl3/Ar. However, the surfaces are still approximately an order of magnitude rougher (as quantified by atomic force microscopy) than those obtained under the same conditions with Cl2/Ar. InP surfaces etched at high BCl3-to-Ar ratios have measurable concentrations of boron-and chlorine-containing residues.  相似文献   

8.
The decomposition of carbon tetrachloride was investigated in an RF inductively coupled thermal plasma reactor in inert CCl4–Ar and in oxidative CCl4–O2–Ar systems, respectively. The exhaust gases were analyzed by gas chromatography-mass spectrometry. The kinetics of CCl4 decomposition at the experimental conditions was modeled in the temperature range of 300–7,000 K. The simulations predicted 67.0 and 97.9% net conversions of CCl4 for CCl4–Ar and for CCl4–O2–Ar, respectively. These values are close to the experimentally determined values of 60.6 and 92.5%. We concluded that in RF thermal plasma much less CCl4 reconstructed in oxidative environment than in an oxygen-free mixture.  相似文献   

9.
The comparative study of etching characteristics and mechanisms for TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas was carried out. The etching rates for TiO2, Si and photoresist were measured as functions of gas mixing ratios at fixed gas pressure (10 mTorr), input power (800 W) and bias power (300 W). It was found that the maximum TiO2 etching rate of ~130 nm/min correspond to pure CF4 plasma while an increase in Ar fraction in a feed gas results in the monotonic non-linear decrease in the TiO2 etching rates in all three gas mixtures. Plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling supplied the data on the densities of plasma actives specie as well as on particle and energy fluxes to the etched surface. It was concluded that, under the given set of experimental conditions, the TiO2 etching kinetics in all gas systems correspond to the ion-assisted chemical reaction with a domination of the chemical etching pathway. It was found also that the differences in the absolute TiO2 etching rates correlate with the energy thresholds for TiO2 + F, Cl or Br reaction, and the reaction probabilities for F, Cl and Br atoms exhibit the different changes with the ion energy flux according to the volatility of corresponding etching products.  相似文献   

10.
Silicone rubber samples were treated by CF4 capacitively coupled plasma at radio frequency (RF) power of 60, 100 and 200 W for a treatment time up to 20 min under CF4 flow rate of 20 sccm, respectively. Static contact angle, ATR-FTIR and XPS, and AFM were employed to characterize the changes of surface on hydrophobicity, functional groups, and topography. The results indicate the static contact angle is improved from 100.7 to 150.2°, and the super-hydrophobic surface, which corresponds to a static contact angle of 150.2°, appears at RF power of 200 W for a 5 min treatment time. It is suggested that the formation of super-hydrophobic surface is ascribed to the co-action of the increase of surface roughness created by the ablation reaction of CF4 plasma and the formation of [–SiF x (CH3)2−x –O–] n (x = 1, 2) structure produced by the direct attachment of F atoms to Si.  相似文献   

11.
For low-pressure, high-density plasma systems, etch products can play a significant role in affecting plasma parameters such a.s species concentration and electron temperature. The residence time of etch products in the chamber can he long, hence depleting the concentration of the reactants, and leading to a decrease in etch rate. We use a spatially averaged global model including both gas phase and surface chemistry to study Cl2 etching of polvsilicon. Etch products leaving the wafer surface are assioned to he SiCL2 and SiCl4. These species can be fragmented and ionized by collisions with energetic electrons, generating neutral and charged SiCl, products (x=0–4). Two limiting cases of the etch mechanism are found. an ion flux-limited regime and a neutral reactant-limited regime. The high degree of dissociation in high-density plasmas leads to the formation of elemental silicon, which can deposit on the chamber walls and wafer surface. We include surface models for both the wall and the wafer to better understand the role of etch products as a function of flowrate, pressure, and input pwer. A phenomenological model for the surface chemistry is based on available experimental data. We consider the two limiting conditions of nonreactive and reactive walls. These models are perfectly reflective walls, where all silicon-containing species are reflected; and reactive walls, which act as reactive sites for the formation of SiCl2 and SiCl4 etch products. The two limiting conditions give significantly different results. A decrease in the absolute atomic silicon density and a weaker dependence of etch rate on flowrate are observed for the reactive wall.  相似文献   

12.
Reactive ion etching (RIE) was used to etch bismuth zinc niobate (BZN) films in SF6/ Ar plasma as a function of radio frequency (RF) power. Within the RF power range of choice, the etch rate of BZN films increases with increasing RF power. However, when RF power exceeds 200 W, the etch rate of films appears to increase at a slower rate. The structural properties of the BZN films before and after etching were characterized using X‐ray diffraction. As‐deposited film shows a cubic pyrochlore structure with preferential (222) plane orientation, but all the films etched at different reactive ion etching powers exhibit preferential (400) plane orientation. With increasing RF power, the ZnF2 phase becomes evident. Also, the film surfaces before and after etching were analysed using XPS. Metal fluorides were found to remain on the surface, resulting in varying relative atomic percentages with RF power. Zn‐rich surfaces were formed because low‐volatile ZnF2 residues were difficult to remove. Bi and Nb can be removed easily through chemical reactions because of their high volatility, whereas Bi–F and Nb–F, which were thought to be present in the form of a metal oxyfluoride, can still be detected using the narrow scan spectra. RF power has an effect on etch reaction through different plasma densities and particle energies, thus resulting in varying compositions and element chemical binding states. RF power also has an effect on the removal of residues. The minimum value of F atomic concentration is achieved at 150 W. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Dry etching of common masking materials used in GaAs device technology, was examined down to temperatures of –30°C. The etch rates of SiNx, SiO2, and W in SF6/Ar are reduced below 0°C, but the anisotropy of the etching is improved at low temperature. Microwave enhancement of the SF6/Ar discharges produces increases in etch rates of several times at 25°C, but much lower increases at –30°C substrate temperature. The underlying GaAs surface shows increased S and F coverage after low-temperature etching, but these species are readily removerd either by anex-situ wet chemical cleaning step or an in-situ H2 plasma exposure. Photoresist etching is less sensitive to temperature, and anisotropic profiles are produced between –30 and +60°C in pure O2 discharges.  相似文献   

14.
The temperature dependence of unit cell parameters for monoclinic KPb2Cl5 and tetragonal RbPb2Br5 crystals was studied in the range of 100–298 K. Linear and volume thermal expansion coefficients were determined.  相似文献   

15.
Plasma-chemical reduction of SiCl4 in mixtures with H2 and Ar has been studied by optical emission spectroscopy (OES) and laser interferometry techniques. It has been found that the Ar:H2 ratio strongly affects the plasma composition as well as the deposition (r D) and etch (r E) rates of Si: H, Cl films and that the electron impact dissociation is the most important channel for the production of SiClx species, which are the precursors of the film growth. Chemisorption of SiClx and the reactive surface reaction SiClx+H–SiCl(x–1)0+HCl are important steps in the deposition process. The suggested deposition model givesr D [SiClx][H], in agreement with the experimental data. Etching of Si: H, Cl films occurs at high Ar: H2 ratio when Cl atoms in the gas phase become appreciable and increases with increasing Cl concentration. The etch rate is controlled by the Cl atom chemisorption step.  相似文献   

16.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

17.
In this work we report the performance of permeation barriers based on organic/inorganic multilayer stacks. We have used PMMA-SiO2 (poly methyl methacrylate-silica) hybrid films synthesized through a sol–gel route as organic–inorganic components, whereas Al2O3 thin films were used as the inorganic component. The hybrid layers were deposited by dip coating and the Al2O3 by atomic layer deposition (ALD), films were prepared on polyethylene naphthalene (PEN) substrates. The permeability of the films and stacks is evaluated using helium as the diffusion gas in a custom made ultra-high vacuum system. The results show that permeability for PEN is reduced from 5 × 10−3 g/m2-day to about 9 × 10−5 g/m2-day for the best multiple barrier evaluated. Increased barrier properties are due to the increasing in the path and hence the lag-time of the permeating gas. In particular, we report the surface roughness of the different layers and its impact on the barrier performance. The hybrid layers reduced notably the roughness of the bare PEN substrate improving the quality of the Al2O3 layer in the barrier. The optical transmittance of the barriers in the visible region is higher than 80% in all the studied cases.  相似文献   

18.
The chlorination of Sm2O3 in the presence of carbon using the gaseous mixture Cl2(g)+Ar(g) has been studied by thermogravimetry. The effects of both the temperature between 200 and 950 °C and the total gas flow rate between 2.1 and 7.9 l h−1 on the reaction rate were analyzed. The starting temperature of reaction, the stoichiometry and kinetic regimes of the reaction were obtained. Reactants and products were analyzed by X-ray diffraction (XRD) and electronic dispersive spectroscopy (EDS). The temporal evolution of the solid microstructure was followed by scanning electron microscopy (SEM).  相似文献   

19.
Microwave discharges of HBr/H2/Ar and H/H2/Ar with additional do biasing of the sample were used to etch InP, GaAs, and AlGaAs at temperatures between 50–250°C. The etch rates increase by factors of 3–50 and 5–9, respectively, for HBr-and HI-based discharges over this temperature range, but display non-Arrhenius behavior. The etched surfaces became very rough above 100°C for InP with either discharge chemistry due to preferential loss of P, while GaAs and AlGaAs are more tolerant of the elevated temperature etching. The near-surface electrical properties of InP are severely degraded by etch temperatures above 100°C, while extensive hydrogen in-diffusion occurs in GaAs and AlGaAs under these conditions, leading to dopant passivation which can be reversed by annealing at 400°C.  相似文献   

20.
Mixed-phase TiO2 nanopowders with different ratios of anatase and rutile have been successfully synthesized using atmospheric pressure plasma jet driven by dual-frequency power sources. The crystal structures of the TiO2 nanopowders were characterized by X-ray diffraction, SAED, HRTEM, and Raman shift spectroscopy. These results indicated that samples possessed anatase and rutile structure, in addition, the crystallinity of the TiO2 nanopowders increased and the chlorine contamination decreased with discharge RF power increasing. The photocatalytic activity of the TiO2 nanopowders was evaluated by decomposition methylene blue solution. The TiO2 nanopowders which were produced at the discharge RF power of 110 W had the highest photocatalytic activity. Optical emission spectroscopy (OES) was used to detect various excited species in the plasma jet. The results indicate that the various RF power significantly changes the intensities of emission lines (Ar, Ar+, Ti, Ti+, Ti2+, Ti3+ and O), which results in the TiO2 nanopowders a mixture of anatase and rutile phases. The nonequilibrium chemical composition could be formed in one step without anneal. It may have potential applications for synthesizing nanosized particles of high crystallinity by reactive nonthermal plasma processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号