首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The palladium-catalyzed cross-coupling of cyclic thioamides with arylboronic acids in the presence of stoichiometric amounts of a copper(I) cofactor is described. The desulfitative carbon-carbon cross-coupling protocol is performed under neutral conditions and can be applied to a range of heterocyclic structures with embedded thioamide fragments. Successful carbon-carbon cross-coupling is independent of the ring size, aromaticity/nonaromaticity, the presence of additional heteroatoms, or other functional groups in the starting thioamide structure. Employing controlled microwave irradiation at 100 degrees C, most cross-couplings can be completed within 2 h and proceed in high yields. An advantage of using thioamides as starting materials is the fact that the system can be tuned to an alternative carbon-sulfur cross-coupling pathway by changing to stoichiometric copper(II) under oxidative conditions. Both types of thioamide cross-couplings are orthogonal to the traditional base-catalyzed Suzuki-Miyaura cross-coupling of aryl halides with boronic acids.  相似文献   

2.
Song KC  Kim JS  Park SM  Chung KC  Ahn S  Chang SK 《Organic letters》2006,8(16):3413-3416
[reaction: see text] A new thioamide derivative of 8-hydroxyquinoline-benzothiazole was prepared, and its fluorogenic chemodosimetric behaviors toward transition-metal ions were investigated. The thioamide derivative showed highly Hg2+-selective fluorescence enhancing properties (167-fold) in 30% aqueous acetonitrile solution. The selective and sensitive signaling behaviors were found to originate from the Hg2+ ion induced transformation of the very weak fluorescent thioamide derivative into a highly fluorescent amide analogue.  相似文献   

3.
Thioamide dianions were generated by the highly efficient reaction of N-benzyl thioamides with 2 equiv of BuLi. Alkylation, allylation, and silylation took place selectively at the carbon atom adjacent to the nitrogen atom of the thioamide dianions. Oxiranes and an aldehyde were also used as electrophiles in the reaction of thioamide dianions to form N-thioacyl 1,3- or 1,2-amino alcohols. The insertion reaction of elemental sulfur to a thioamide dianion and subsequent ethylation afforded a N-thioacyl hemithioaminal. NMR studies on the thioamide mono- and dianions derived from N-benzyl 2-methoxythiobenzamide showed a linear relationship between the chemical shifts of all carbon atoms of thioamide mono- and dianions. The results also suggested that the negative charge at the benzylic carbon atom of the dianion is not fully delocalized. The charge distribution patterns of the dianion are consistent with those of pi polarization.  相似文献   

4.
A hybrid palladium catalyst assembled from a chiral phosphoric acid (CPA) and thioamide enables a highly efficient and enantioselective β-C(sp3)−H functionalization of thioamides (up to 99 % yield, 97 % ee). A kinetic resolution of unsymmetrical thioamides by intermolecular C(sp3)−H arylation can be achieved with high s-factors. Mechanistic investigations have revealed that stereocontrol is achieved by embedding the substrate in a robust chiral cavity defined by the bulky CPA and a neutral thioamide ligand.  相似文献   

5.
A hybrid palladium catalyst assembled from a chiral phosphoric acid (CPA) and thioamide enables a highly efficient and enantioselective β‐C(sp3)?H functionalization of thioamides (up to 99 % yield, 97 % ee). A kinetic resolution of unsymmetrical thioamides by intermolecular C(sp3)?H arylation can be achieved with high s‐factors. Mechanistic investigations have revealed that stereocontrol is achieved by embedding the substrate in a robust chiral cavity defined by the bulky CPA and a neutral thioamide ligand.  相似文献   

6.
A new Schiff base N-[(E)-(2-hydroxyphenyl)methylidene]-N’-[(Z)-(2-hydroxyphenyl)methylidene]ethanebis(thioamide) (LC) containing sulfur, nitrogen, and oxygen atoms has been synthesized by condensation of ethanebis(thioamide) with 2-hydroxybenzaldehyde. Metal complexes were synthesized by reaction of the new ligand with copper(II) and cobalt(II) as nitrate salts and with rhodium(III) as chloride salt, using hot absolute ethanol as solvent. All the new compounds were characterized by use of different physicochemical techniques including UV–visible spectroscopy, magnetic susceptibility, IR spectroscopy, molar conductance, and determination of metal content. It is proposed the paramagnetic copper and cobalt complexes adopt octahedral geometry whereas the diamagnetic rhodium complex has octahedral geometry.  相似文献   

7.
We report a paracyclophane N-Me thioamide chiral reagent for the asymmetric thio-Claisen rearrangement with high diasteroselectivity. Comparisons between candidate chiral reagent N-phenyl-N-([2.2]paracyclophan-4-yl)amide, N-methyl amide, N-phenyl thioamide, and N-methyl thioamide are made both by experiment and theoretical calculations to clarify the principle behind the high diasteroselectivity. Dynamic (1)H NMR phenomenon tested by varying temperature (VT) experiments has proved that N-Ph amides have triple splitting peaks, while N-Ph thioamide would reduce the number to two, further substituting the Ph to Me made dynamic phenomenon disappear. So the side chain is thought to be the most rigid in N-Me thioamide, which accounts for a structure prerequisite favoring high efficient chirality transfer. This is confirmed by theoretical calculation: remarkable energy difference exists between the Re and Si faces of the chiral molecule. To further clarify the possible pathways for thio-Claisen rearrangement, theoretical prediction is adopted. The result implies that the cisoid pathways will dominate the process. Further experiment confirmed this: with N-Me thioamide, the asymmetrical reaction affords γ-unsaturated thioamides in good yields and high diastereoselectivities up to 98%. After removing the thioamide auxiliaries under hydrolysis conditions, product β,γ-substituted chiral alcohols reached high enantiopurity of 98% ee.  相似文献   

8.
Exploration of the full potential of thioamide substitution as a tool in the chemical biology of peptides and proteins has been hampered by insufficient synthetic strategies for the site‐specific introduction of a thioamide bond into a peptide backbone. A novel ynamide‐mediated two‐step strategy for thiopeptide bond formation with readily available monothiocarboxylic acids as thioacyl donors is described. The α‐thioacyloxyenamide intermediates formed from the ynamides and monothiocarboxylic acids can be purified, characterized, and stored. The balance between their activity and stability enables them to act as effective thioacylating reagents to afford thiopeptide bonds under mild reaction conditions. Amino acid functional groups such as OH, CONH2, and indole NH groups need not be protected during thiopeptide synthesis. The modular nature of this strategy enables the site‐specific incorporation of a thioamide bond into peptide backbones in both solution and the solid phase.  相似文献   

9.
The thioamide vinylogues (2-aminovinyl thioketones) react as heterodienes with open-chain and cyclic dienophiles to give substituted 4-amino-3,4-dihydro-2H-thiopyrans, or substituted 2H-thiopyrans and substituted 7 - methyl - 7,7a - dihydro - 5H - thiopyranno[2,3 - c] - 5 - furanones respectively, in good agreement with calculated perturbation energy of second order.  相似文献   

10.
The effect of thioamide substitution on the conformational stability of an azaglycine-containing peptide, For-AzaGly-NH2 (1), was investigated for the sake of finding possible applications by using ab initio and DFT methods. As model compounds, For-[psiCSNH]-AzaGly-NH2 (2), For-AzaGly-[psiCSNH]-NH2 (3), and For-[psiCSNH]-AzaGly-[psiCSNH]-NH2 (4) were used. Two-dimensional phi-psi potential energy surfaces (PESs) for 2-4 were calculated at the B3LYP/6-31G*//HF/6-31G* level in gas (epsilon = 1.0) and in water (epsilon = 78.4) by applying the isodensity polarizable continuum model (IPCM) method. On the basis of these PESs, the minimum energy conformations for 2-4 were characterized at the B3LYP level with 6-31G*, 6-311G**, and 6-31+G** basis sets. The remarkable structural effect of thioamide substitution for 2-4 is that beta-strand structure is observed as a global or local minimum. The minima of 2-4 are also compared with those for glycine and thioamide-containing glycine peptides. Our theoretical results demonstrate that compounds 2-4 would be used to design controllable secondary structures.  相似文献   

11.
X-ray crystallographic analysis showed that N-thiobenzoyl-7-azabicyclo[2.2.1]heptane displays marked nonplanarity of the thioamide (1a, alpha = 167.1 degrees and |tau| = 11.2 degrees) as compared with the corresponding monocyclic pyrrolidine thioamide (2a, alpha = 174.7 degrees and |tau| = 3.9 degrees). In a series of para-substituted or unsubstituted thioaroyl-7-azabicyclo[2.2.1]heptanes (1a-1h), the planarity of the thioamide depended significantly on the electronic nature of the substituent; for example, in the p-nitro-substituted compound, planarity was substantially restored (1h, alpha = 175.2 degrees and |tau| = 0.1 degrees). In solution, increasing electron-withdrawing character of the aromatic substituent was associated with a larger rotational barrier of the bicyclic thioamides, as determined by means of variable-temperature (1)H NMR spectroscopy and line shape analysis. The reduced rotational barrier, that is, reduced enthalpy of activation (DeltaH(double dagger)) for thioamide rotation, of 1a as compared with that of 2a in nitrobenzene-d5 is consistent with the postulate that 1a assumes a nonplanar thioamide structure in solution. These results indicate that the planarity of thioamides based on 7-azabicyclo[2.2.1]heptane is controlled by electronic factors in the solid phase and in solution.  相似文献   

12.
Density functional calculations have been performed to examine the stability of nonplanar conformations of thioamide derivatives. Electrostatic, orbital, and ring strain effects were invoked to stabilize the nonplanar conformations of thioamide systems 2 – 7 . Electrostatic interactions helped to achieve the twisted forms of thioamide derivatives; however, pyramidal forms predicted to be the global minimum. Negative hyperconjugative type interactions enhanced the stability of the twisted form 4b when compared with the planar form 4a . The influence of ring strain effect to achieve the twisted form of thioamide was observed with azirine ring. The predictions made with B3LYP/cc‐pVDZ+ level of theory was found to be in good agreement with more accurate CBS‐QB3 method. The solvent calculations performed with polarized continuum solvation model suggest that the relative stabilities of the nonplanar forms of thioamide derivatives are in general similar to the gas phase results. The importance of hydrogen bonding interactions between the solvent molecules and thioamide derivatives was observed toward the enhanced stability of twisted forms using a combination of explicit solvent molecules and continuum model. The natural bond orbital analysis confirmed the participation of nN → π*C?S delocalizations in the planar forms and corroborated the earlier reports on larger delocalizations in thioamide systems. Furthermore, the influence of electrostatic and ring strain effects on the amide, natural amides, and selenoamide has also been studied. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011  相似文献   

13.
The cyclization of (2-bromophenyl)thioacetic acid morpholide to 2-(morpholin-4-yl)-1-benzothiophene in the presence of copper(II) chloride has been found to involve intermediate formation of a complex consisting of two thioamide molecules and one copper cation. The complex has been isolated, and its molecular structure parameters have been determined by quantum chemical calculations.  相似文献   

14.
[reaction: see text] Novel reactions of C60 with amino acid ester hydrochlorides and CS2 in the presence of Et3N affording fullerene derivatives 2 and 3 containing biologically active amino acids, thioamide, and thiourea units have been investigated. The thioamide groups in compounds 2 are sensitive to moisture and can easily be hydrolyzed to amide groups.  相似文献   

15.
Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium‐catalyzed asymmetric transfer hydrogenation of ketones in 2‐propanol. Catalysts containing thioamide ligands derived from L ‐valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L ‐valine‐based hydroxamic acids or hydrazides facilitated the formation of the (S)alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide‐based catalyst systems demonstrate a pseudo‐first‐order dependence on the substrate, whereas pseudo‐zero‐order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate‐limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate‐limiting step of the catalytic reduction reaction.  相似文献   

16.
A new heterocyclic system — 3-imino-4-methyldihydrothieno[3,4-b]indole — was obtained by treatment of 1-methylindole-2-carboxylic acid thioamide with aldehydes or ketones in the presence of hydrogen chloride. Reactions involving saponification and acetylation of the imino group of the thieno ring and opening of the thieno ring by the action of LiAlH4 to give a bis(indolylphenylmethyl) sulfide were carried out. A scheme is proposed in which the SH group of the thioamide adds to the carbonyl compound in the first step, after which the product undergoes intramolecular cyclization in the 3 position of indole.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1327–1331, October, 1977.  相似文献   

17.
The crystallization of the SCS pincer platinum complex with secondary thioamide groups, [4-methyl-2,6-bis(anilinothiocarbonyl)-κ2S,S’-phenyl-κC1]chloroplatinum(II), spontaneously forms a trinuclear cluster complex accompanied by liberating HCl in DMSO/EtOH mixture. The crystal structure of the SNS pincer copper complex with secondary thioamide groups, [2,5-bis(benzylaminothiocarbonyl)-κ2S,S’-pyrrolyl-κN1]chlorocopper(II), exhibits a dimer structure bearing the bridging thioamide group. The thioamide group acts as the bridging ligand of the multimetallic complexes in different anionic and neutral manners.  相似文献   

18.
1-(2-Alkynylphenyl)ketoximes react with Lawesson's reagent catalyzed by InCl(3) and cyanuric chloride leading to 4-methylene-4H-benzo[d][1,3]thiazines in good yields. This tandem reaction proceeds with high efficiency through Beckmann rearrangement, thioamide formation, and intramolecular nucleophilic cyclization.  相似文献   

19.
Convergent total syntheses of myxothiazols A and Z are described. The syntheses are based on elaboration of the (S)-E,E-diene thioamide 22, conversion of 22 into the bis-thiazole 27 and Wittig reactions between 27c and the aldehyde 30. The substituted beta-methoxyacrylate aldehyde 30 was produced via an Evans asymmetric aldol protocol or via the 2H-pyran-2-one 31. An E-selective Wittig reaction between the ylide derived from the phosphonium salt 27c and the (+)-aldehyde 30 led to (+)-myxothiazol Z (1b), and a corresponding reaction with the (+/-)-acrylamide aldehyde 44 gave (+/-)-myxothiazol A (1a). Complementary studies led to synthesis of the ester 47b, corresponding to myxothiazol R and myxothiazol S.  相似文献   

20.
A variety of thiocarbonyl derivatives (thioketone, thioester, thioamide, dithioester, and dithiocarbamate) were converted to the corresponding gem-difluorides in excellent yields on reaction with the fluorinating agent, bis(2-methoxyethyl)aminosulfur trifluoride, in the presence of SbCl(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号