首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of a trigonal bipyramidal structure for [Cu(tet b)X]+ (blue) (where X=Cl, Br, I) is supported by the observation of two distinct d-d bands, which are assigned as and d, dxy→d and dxz, dyzd transitions respectively. The stability constants for the formation of [Cu(tet b)X]+ (blue) from [Cu(tet b)]z+ (blue) and X? were determined by spectrophotometric method at 25°, 35° and 45°C. The corresponding δH° and δS° values were obtained from the variations of the stability constants between 25° and 45°C  相似文献   

2.
The structures of 41 Ni(II) and 17 Cu(II) complexes of macrocyclic quadridentate ligands have been analyzed, and are discussed about bond lengths, bond angles, conformations, and configurations, upon which many conclusions are formed. The inter- or intra-molecular hydrogen bonds exist among ligands and hydrates in many compounds and play an important role in the structures. There are exhibited two distinct peaks on the histogram of the average Ni-N distances, corresponding to four coordination and six coordination; these average Ni-N distances are 1.95(4) Å and 2.10(5) Å, respectively. The most probable structures of Ni(II) macrocyclic compounds have coordination number six for the metal ion, chair forms for six-membered rings, planar structure for the metal ion and the four donor atoms of the quadridentate ligand and an inversion center at the central metal ion.  相似文献   

3.
Complexation reactions of 5,6,7,8,9,10,16,17-octahydrodibenzo[e, m][1, 4]dioxa-[8, 11]diazacyclotetradecine-copper(II) complex with halide and pseudohalide ions have been studied at 25.0° in three water-methanol mixed solvents by spectro-photometric method. It is found that the equilibrium constants increases in the order of 50 vol.% CH3OH<75 vol.% CH3OH<95 vol.% CH3OH for solvents and I-<Br?<CI?<SCN?, N?3 for anions.  相似文献   

4.
The complexes [Cu(L1)(H2O)2](BF4)2 · 2H2O ( 1 ) [L1 = 5, 16‐dimethyl‐2, 6, 13, 17‐tetraazatricyclo(14, 4, 01.18,07.12)docosane] and 0.5[Cu(L2)(NO3)2][Cu(L2)](NO3)2 ( 2 ) [L2 = dibenzyl‐5, 16‐dimethyl‐2, 6, 13, 17‐tetraazatricyclo(14, 4, 01.18,07.12)docosane] were synthesized and characterized by single crystal X‐ray analyses. In these constrained macrocycles, the central copper(II) atoms are in a tetragonally distorted octahedral environment with four nitrogen atoms of the macrocyclic ligands in equatorial positions and oxygen atoms from either water molecules or nitrato groups in axial positions. The macrocyclic ligands in both complexes adopt the most stable trans‐III conformation. The Cu–N distances [1.999(7)–2.095(7) Å] are typical for such complexes, but the axial ligands are weakly coordinating Cu–OH2 bonds [2.693(3) Å] and Cu–ONO2 bonds [2.873(7) Å] due to the combination of the pseudo Jahn–Teller effect and strong in‐plane ligand field. The crystals are stabilized by a three‐dimensional network by hydrogen bonds that are formed among the secondary nitrogen hydrogen atoms, oxygen atoms of water molecules, fluorine atoms of BF4, and oxygen atoms of NO3. The electronic absorption and IR spectroscopic properties are also discussed.  相似文献   

5.
Three N2S2 macrocycles ( 3, 10, 12 ) carrying an amino group as a pendant arm have been synthesized and their complexation properties towards Ni2+ and Cu2+ studied. The crystal structures of the Cu2+ complexes with 10-methyl-1,4-dithia-7,10-diazacyclododecane-7-ethanamine ( 3 ) and 11-methyl-1,4-dithia-8,11-diazacyclotetradecane-8-ethanamine ( 10 ) show that, in both cases, the Cu2+ is pentacoordinated by the four donor atoms of the macrocycle and the amino group of the side chain. In aqueous solution, however, two forms of the complexes with stoichiometries [MLH] and [ML] (M = Cu2+ or Ni2+) have been observed. In [MLH], the amino group is protonated and does not bind to the metal ion, whereas in [ML] the amino group is bound, and a pentacoordinated geometry results. The pKa values for the equilibrium [ML] + H+?[MLH]+ decrease in the order 12 > 10 > 3 , indicating that the 2-aminoethyl side chain binds better to the Cu2+ than the 3-aminopropyl side chain. Cyclic voltammetry for the Cu2+/Cu+ pair shows that the 2-aminoethyl pendant arm stabilizes the Cu2+ oxidation state, when the metal ion is in the 14-membered ring ( 10 ), whereas it stabilizes Cu+ for the 12-membered macrocycle ( 3 ).  相似文献   

6.
7.
It has been established that, depending on the structure of the substituents in the ligand, macrocyclic complexes of copper(II) show in the crystal lattice different types of non-covalent interactions (hydrophobic, CH- interactions, and -stacking) which lead to the formation of intermolecular aggregates (dimers) and the formation of layer structures with alternating hydrophobic and hydrophilic regions.  相似文献   

8.
Complexation of Cu(II) with arabinogalactan as influenced by solution pH was studied by spectrophotometry and the method of dialysis equilibrium. Copper ions form complexes with arabinogalactan in a wide pH range, pH 5.0-12.5. Arabinogalactan forms two complex species with the metal. The composition and formation constant of the complex formed at pH <10.8 were determined.  相似文献   

9.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

10.
11.
The structure of macrocyclic ligand complex, (5, 7, 12, 14-tetraethyl-7, 14-dimethyl-1, 4, 8, 11-tetraazacyclotetra decane)·NiII·(ClO4)2 has been determined by X-ray diffraction with three dimensional counter data. This compound, C20H44N4NiII·(ClO4)2, crystallizes in orthorhombic space group Pbca, with cell parameters a=14.369, b=11.752, c=16.207 A, V=2736.8 A3, determined from Syntex Pl autodiffractomter. The formula weight (598.21) and a measured density of 1.45 gm cm?3 (by flotation) indicate the presence of four molecules per unit cell (Dc=1.452 gm cm?3). The structure was solved, using Patterson and Fourier methods and refined by full-matrix least-squares techniques to a reliability index, R(F) of 0.09, based on 1480 independent observed data corrected for absorption, L-p factors. In this molecule, in addition to the usual covalent and ionic bonds, there exist two hydrogen bonds between the perchlorate ions and the amine groups. The Ni and the four N atoms are coplanar. The six membered ring subtends a larger angle (93.5(3)°) over the Ni atom than the five membered ring (86.5(3)°) does. The former belongs to the chair form and the latter pertains to the gauche form.  相似文献   

12.
A series of copper(II) complexes with tripodal polypyridylmethylamine ligands, such as tris(2-pyridylmethyl)amine (tpa), ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine (Me(1)tpa), bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine (Me(2)tpa), and tris((6-methyl-2-pyridyl)methyl)amine (Me(3)tpa), have been synthesized and characterized by X-ray crystallography. [Cu(H(2)O)(tpa)](ClO(4))(2) (1) crystallized in the monoclinic system, space group P2(1)/a, with a = 15.029(7) ?, b = 9.268(2) ?, c = 17.948(5) ?, beta = 113.80(3) degrees, and Z = 4 (R = 0.061, R(w) = 0.059). [CuCl(Me(1)tpa)]ClO(4) (2) crystallized in the triclinic system, space group P&onemacr;, with a = 13.617(4) ?, b = 14.532(4) ?, c = 12.357(4) ?, alpha = 106.01(3) degrees, beta = 111.96(2) degrees, gamma = 71.61(2) degrees, and Z = 4 (R = 0.054, R(w) = 0.037). [CuCl(Me(2)tpa)]ClO(4) (3) crystallized in the monoclinic system, space group P2(1)/n, with a = 19.650(4) ?, b = 13.528(4) ?, c = 8.55(1) ?, beta = 101.51(5) degrees, and Z = 4 (R = 0.071, R(w) = 0.050). [CuCl(Me(3)tpa)][CuCl(2)(Me(3)tpa)]ClO(4) (4) crystallized in the monoclinic system, space group P2(1)/a, with a = 15.698(6) ?, b = 14.687(7) ?, c = 19.475(4) ?, beta = 97.13(2) degrees, and Z = 4 (R = 0.054, R(w) = 0.038). All the Cu atoms of 1-4 have pentacoordinate geometries with three pyridyl and one tertiary amino nitrogen atoms, and a chloride or aqua oxygen atom. Nitrite ion coordinated to the Cu(II) center of Me(1)tpa, Me(2)tpa, and Me(3)tpa complexes with only oxygen atom to form nitrito adducts. The cyclic voltammograms of [Cu(H(2)O)(Me(n)()tpa)](2+) (n = 0, 1, 2, and 3) in the presence of NO(2)(-) in H(2)O (pH 7.0) revealed that the catalytic activity for the reduction of NO(2)(-) increases in the order Me(3)tpa < Me(2)tpa < Me(1)tpa < tpa complexes.  相似文献   

13.
Russian Journal of Coordination Chemistry - New water-soluble copper(II) bis-N,O-chelate complexes [Cu(L2)2Cl2] (I), [Cu2(L1)2Cl4] (II), and [Cu(L1)2Cl]2[CuCl4] (III) (L1, L2 = pyridyl-containing...  相似文献   

14.
Stoichiometry and equilibrium study of copper‐ligands including mercaptobenzoxazole (MBO), 4‐propyl 2‐thiouracyl (PTU), methyl‐2‐pyridylketone oxime (MPKO), phenyl‐2‐pyridylketone oxime (PPKO), 4,6‐dihydroxy‐2‐mercaptopyrimidine (DHMP), N,N′‐phenylene bis(salicylaldimine) (PBS) and 1,2‐bis(2‐hydroxyphenyl)naphtaldiimine (BHNPDI) were conducted in aqueous and nonaqueous solution by potentiometry and spectrophotometry. Stability constants of the complexes are determined at 25 ± 1 °C and 0.1 or 0.05 M ionic strength in water or acetonitrile solvents. Oximes ligand protonation constants and copper‐ligands complexes' stability and hydrolysis constants were calculated using the BEST program in aqueous solution. The stability constants of copper‐ligands complexes were calculated using the KINFIT program in acetonitrile solution. The results of these two methods are made self‐consistent, then rationalized assuming an equilibrium model including the species, ML, MLH, MLOH and ML2 (where the charges of the species have been ignored for the sake of simplicity) (L = MBO, PTU, MPKO, PPKO, DHMP, BHNPDI and PBS).  相似文献   

15.
A series of tetra-N-alkylated 1,4,8,11-tetraazacyclotetradecanes have been synthesized and their complexation potential towards Ni2+ and Cu2+ studied. In the case of sterically demanding alkyl substituents, such as i-Pr, PhCH2, or 2-MeC6H4CH2, no metal complexes are formed, whereas for substituents such as Me, Et, and Pr, the metal ion is incorporated into the macrocycle. The spectroscopic properties of the Ni2+ and Cu2+ complexes in aqueous solution indicate that, depending on the sterical hindrance of the N-substituents, the complexes are either square planar or pentacoordinated. All these Ni2+ and Cu2+ complexes react with N to give ternary species, the stability of which have been determined by spectrophotometric titrations. The tendency to bind N decreases with increasing steric hindrance of the alkyl substituents. The X-ray studies of the Ni2+ complex with the macrocycle 11 , substituted by two Me and two Pr groups, and that of the Cu2+ complex with the tetraethyl derivative 8 show that in the solid state, the metal ions exhibit square planar coordination with a small distortion towards tetrahedral geometry.  相似文献   

16.
The new bis-macrocycle 1, 1′-[(1H-pyrazol-3], 5-diyl)bis(methylene)bis[1, 4, 7-triazacyclononane] ( 1 ) was synthesized and its complexation with Cu2+ studied. Potentiometric and spectrophotometric titrations indicate that, in addition to the mononuclear species [Cu(LH2)]4+, [Cu(LH)]3+, [CuL]2+, and [Cu(LH?1)]+, binuclear complexes such as [Cu2L]4+, [Cu2(LH?1)]3+, and [Cu2(LH-2)]2+ are also formed in solution. The stability constants and spectral properties of these are reported. The binuclear species [Cu2(LH?1)]3+ specifically reacts with an azide ion to give a ternary complex [Cu2(LH?1)(N3)]2+, the stability and structure of which were determined spectrophotometrically and by X-ray diffraction, respectively. The two Cu2+ ions are in a square-pyramidal coordination geometry. The axial ligand is one of the N-atoms of the 1, 4, 7-triazacyclononane ring, whereas at the base of the square pyramid, one finds the other two N-atoms of the macrocycle, one N-atom of the pyrazolide and one of the azide, both of which are bridging the two metal centres. In [Cu2(LH?1)(N3)]2+, a strong antiferromagnetic coupling is present, thus resulting in a species with a low magnetic moment of 1.36 B.M. at room temperature.  相似文献   

17.
The 14-membered tetraazamacrocyclic Ni2+ and Cu2+ complexes of 4 (1, 4, 8-trimethyl-11-[(2-methylthio)ethyl]-1, 4, 8, 11-tetraazacyclotetradecane), 5 . (1, 4-dimethyl-8, 11-bis[2-(methylthio)ethyl]-l, 4, 8, 11-tetraazacyclotetradecane), and 7 (1, 4, 8, ll-tetrakis[2-(methylthio)ethyl]-1, 4, 8, 11-tetraazacyclotetradecane), with pne, two, and four methylthio-substituted pendant chains, respectively, and the Ni2+ complex of 6 (1, 4-dimethyl-8, 11-bis (2-methoxyethyl)-1, 4, 8, 11-tetraazacyclotetradecane), with two methoxy-substituted pendant chains, were synthesized and their chemistry studied with regard to modelling F430. Solution spectra in H2O, MeCN, and DMF indicate participation of the side chain in metal coordination when the donor group is a thioether, whereas no coordination with the metal ion is observed with the ether group. Similarly the X-ray structures of the thioether-containing compounds [Ni( 5 )](ClO4)2, [Cu( 5 )](ClO4)2, and [Cu( 7 )](ClO4)2 show a coordination number of 5, whereas that of [Ni( 6 )](ClO4)2 with ether pendant chains, shows a coordination number of 4. Cyclic voltammetry of these complexes in MeCN reveals that Ni2+ is reversibly reduced to Ni+ between ?0.64 and ?0.77 V vs. SCE, the potential being influenced by the nature and number of the pendant chains. At more negative potentials, the thioether is cleaved, whereby a thiol is formed; the thiol is then oxidized at ca. + 0.8 V vs. SCE, when a glassy carbon electrode is used, or at ca. 0 V vs. SCE at a dropping Hg electrode. No cleavage of the ether bond in [Ni( 6 )](ClO4)2 is observed under similar conditions.  相似文献   

18.
Three novel oxamido‐bridged heterobinuclear copper(II)‐nickel(II) complexes incorporating two different tetraazamacrocyclic compounds were synthesized and characterized by IR, ESR, and electronic spectra. They are of the formulas [(CuL1)Ni(rac‐cth)](ClO)42⋅H2O ( 1 ), [Cu(L2)Ni(rac‐cth)](ClO4)2⋅0.5 EtOH ( 2 ), and [(CuL3)Ni(rac‐cth)](ClO4)2⋅H2O ( 3 ). L1, L2, and L3 are the dianions of diethyl 5,6,7,8,16,17‐hexahydro‐6,7‐dioxo‐15H‐dibenzo[e,n][1,4,8,12]tetraazacyclopentadecine‐13,19‐dicarboxylate, diethyl 5,6,7,8,15,16‐hexahydro‐6,7‐dioxodibenzo[1,4,8,11]tetraazacyclotetracine‐13,18‐dicarboxylate, and diethyl 5,6,7,8,15,16‐hexahydro‐15‐methyl‐6,7‐dioxodibenzo[1,4,8,11]tetraazacyclotetradecine‐13,18‐dicarboxylate, respectively, and rac‐cth is rac‐5,7,7,12,14,14‐hexamethyl‐1,4,8,11‐tetraazacyclotetradecane. The crystal structures of 1 and 2 were determined by single‐crystal X‐ray analysis. The NiII ion is pseudooctahedrally coordinated. The coordination geometry around the CuII ion in 2 is slightly distorted square planar, while that in 1 shows significant distortion towards a tetrahedral structure. The temperature dependence of the magnetic susceptibility for 1 and 2 was analyzed by means of the Hamiltonian =−2J 1 2, leading to J=−63.9 and −67.4 cm−1 for 1 and 2 , respectively.  相似文献   

19.
Mononuclear macrocyclic complexes of manganese(II ), cobalt(II ) and nickel(II ) perchlorate using 10 different oxaazamacrocyclic ligands (L1 — L10) have been prepared and characterized. The complexation reactions with the diiminic ligands were obtained by template condensation of the appropriate dialdehyde and diamine precursors; the reduced macrocycle complexes were synthesized using a direct route. The complexes have been characterized by elemental analyses, molar conductivity, mass spectrometry, IR, UV‐vis spectroscopy, diffuse reflectance and magnetic susceptibility measurements.  相似文献   

20.
Knowledge of the thermodynamic properties of aqueous copper(II) chloride complexes is important for understanding and quantitatively modeling trace copper behavior in hydrometallurgical extraction processing. In this paper, UV–Vis spectra data of Cu(II) chloride solutions with various salinities (NaCl, 0–5.57 mol·kg?1) are collected at 25 °C. The concentration distribution of Cu–Cl species is in good agreement with those calculated by a reaction model (RM). The simple hydrated ion, Cu2+, is dominant at low concentration, whereas [CuCl]+, [CuCl2]0 and [CuCl3]? become increasingly important as the chloride concentration rises. Moreover, the RM calculation suggests the present of a small amount of [CuCl4]2?. The de-convoluted molar spectrum of each species is in excellent agreement with our previous theoretical results predicted by time-dependent density functional theory treatment of aqueous Cu-containing systems. The formation constants for these copper chloride complexes have been reported and are to be preferred, except log10 K 2 ([CuCl2]0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号