首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13C chemical shifts and 31P? 13C spin–spin coupling constants are reported for 10 alkyl-, 20 benzyl- and 3 (naphthylmethyl)-phosphonates. While in saturated aliphatic chains P–C couplings over more than four bonds cannot be resolved, couplings over up to seven bonds are observed in the benzyl type systems. Conformational and substituent effects on J(PC) are studied and discussed. nJ(PF) (n = 4, 5, 6) are reported for the isomeric (fluorobenzyl)phosphonates and nJ(PP) (n = 5, 6, 7) were obtained from the 13C satellites in the 31P n.m.r. spectra of the isomeric diphosphonates, C6H4[CH2P(O)(OEt)2]2. Comparison of those 13C absorptions of the latter, which represent the X parts of ABX or AA′X spin systems, with the spectra of the corresponding (methylbenzyl)phosphonates, CH3C6H4CH2P(O)(OEt)2, yielded the relative signs of nJ(PC) (n = 2–6).  相似文献   

2.
All J(P? H) and J(P? C) values, including signs, have been obtained in acetylenic and propynylic phosphorus derivatives, R2P(X)? C?C? H and R2P(X)? C?C? CH3 (X ? oxygen, lone pair and R ? C6H5, N(CH3)2, OC2H5, N(C6H5)2, Cl) from 1H and 13C NMR spectra. In PIV derivatives the following signs are obtained: 1J(P? C)+, 2J(P? C)+, 3J(P? C)+, 3J(P? H)+, 4J(P? H)? . Linear relations are observed between 1J(P? C), 2J(P? C) and 3J(P? C) versus 3J(P? H), indicating that these coupling constants are mainly dependent on the Fermi contact term, though the other terms of the Ramsey theory do not seem to be negligible for 1J(P? C) and 2J(P? C). In PIII derivatives these signs are: 1J(P? C)- and +, 2J(P? C)+, 3J(P? C)-, 3J(P? H)-, 4J(P? H)+. Only 3J(P? C) and 3J(P? H) reflect a small contribution of the Fermi contact term while in 1J(P? C) and 2J(P? C) this contribution seems to be negligible relative to the orbital and/or spin dipolar coupling mechanisms.  相似文献   

3.
The 1H, 13C and 31P NMR data of several 2-R-2-thiono-1,3-dioxa organophosphorus molecules with 7-membered rings [R = Cl, OC6H5, C6H5, CH3, N(CH3)2] are reported. The conformation of the 7-membered ring is discussed by reference to the 3J(POCH) coupling constants which are compared with those observed in 6-membered 1,3,2-dioxaphosphorinanes. It is shown that caution must be exercised in using the 3J(POCH) angular dependence as a stereochemical tool. The 31P spin lattice relaxation times of some of these 7-membered rings have been measured and the values are discussed.  相似文献   

4.
13C Chemical shifts and 13C? 31P nuclear spin coupling constants have been determined for 26 8-phosphabicyclo[3.2.1]octane derivatives, namely phosphines, phosphine oxides, phosphine sulphides and one phosphonium salt. The influence of the phosphorus configuration on δ and 2J(PC) values was examined and other factors influencing the 2J(PC) coupling constant are discussed.  相似文献   

5.
The easily obtained dimers of phosphole oxides, sulfides and methiodides give 13C NMR spectra where carbons within three (sometimes four) bonds of each 31P nucleus are doublets of doublets and thus constitute X in an AMX spectrum. Most of the spectra have been completely interpreted with the aid of spectral measurements at two magnetic fields. Saturation of the double bonds in dimers of methylphosphole–P(IV) derivatives causes the 31P nuclei to have very similar chemical shifts, with Δν not adequately different from 3J(PP) to give first-order coupling. When both 31P nuclei couple with a given 13C, a second-order (ABX) 31C NMR spectrum is obtained. The presence of the effect is revealed by running the 13C NMR spectra at high magnetic field; J(AX)+J(BX) is constant at all fields, but spacing between the lines of the multiplet varies. The spectrum of the oxide, with Δν/J=1.44 for the 31P spectrum at 36.43 MHz, approaches first order character at 75 MHz; the methiodide spectrum (Δν/J=4.55) is second order at 15 MHz but clearly first order at 50 MHz, and the sulfide (Δν/J=5.6) is nearly first order at 15 MHz. [2 + 2]-Photochemical intramolecular cyclization of the dimer oxides provides cage-like structures where the 31P nuclei are chemically equivalent, but magnetically non-equivalent, making the 13C signals have the characteristics of X in an AA′X coupling pattern.  相似文献   

6.
The 1H, 31P and 13C NMR spectra of tetramethyldiphosphane (1), tetraethyldiphosphane (2) and tetraisopropyldiphosphane (3) have been studied in the temperature range 30 to ?150°C and at magnetic induction up to 5.87 T. In the range ?100 to ?135 °C, the 1H and 13C spectra of 3 show important changes which can be attributed to freezing the interconversion between two equivalent non-trans conformations. The line shape analysis of the 13C signals leads to ΔG = 29.4 kJ mol?1 at ?113 °C for the dynamic process involved. The spin coupling parameters 1J(PP) and N(PC) = 1J(PC) + 2J(PC) observed for 1 in the temperature range 30 to ?120 °C show variations which could be due to a preference for the trans conformation in this diphosphane.  相似文献   

7.
Substituent Effects on NMR Spectra of Pentafulvenes. 13C, 13C-NMR Coupling Constants (1J(C, C)) 1H- and 13C-NMR spectra of 6-monosubstituted pentafulvenes 1 – 8 have been analysed, and 1J(C, C) coupling constants have been determined from ID-inadequate spectra of 13C satellites. It turns out that 13C,13C coupling constants of the ring C-atoms, and especially J(1,2)/J(3,4) and J(2,3), reflect the extent of π delocalisation in the fulvene ring. With increasing electron-donating capacity of the substituent R, J(1,2)/J(3,4) values are decreasing, while J(2,3) (and J(1,5)/J(4,5) as well) are increasing, and linear correlations of Hammett substituent constants σ+ and 1J(C,C) values are obtained.  相似文献   

8.
13C, 1H spin coupling constants of dimethylacetylene have been determined by the complete analysis of the proton coupled 13C NMR spectrum. For the methyl carbon 1J(CH) = + 130.64 Hz and 4J(CH) = + 1.58 Hz, and for the acetylenic carbon 2J(CH) = ? 10.34 Hz and 3J(CH) = +4.30 Hz. The 5J(HH) long-range coupling constant (+2.79 Hz) between the methyl protons was also determined.  相似文献   

9.
Several 1:1 adducts of gallium trihalides with triarylphosphines, X3Ga(PR3) (X=Cl, Br, and I; PR3=triarylphosphine ligand), were investigated by using solid‐state 69/71Ga and 31P NMR spectroscopy at different magnetic‐field strengths. The 69/71Ga nuclear quadrupolar coupling parameters, as well as the gallium and phosphorus magnetic shielding tensors, were determined. The magnitude of the 71Ga quadrupolar coupling constants (CQ(71Ga)) range from approximately 0.9 to 11.0 MHz . The spans of the gallium magnetic shielding tensors for these complexes, δ11?δ33, range from approximately 30 to 380 ppm; those determined for phosphorus range from 10 to 40 ppm. For any given phosphine ligand, the gallium nuclei are most shielded for X=I and least shielded for X=Cl, a trend previously observed for InIII–phosphine complexes. This experimental trend, attributed to spin‐orbit effects of the halogen ligands, is reproduced by DFT calculations. The signs of CQ(69/71Ga) for some of the adducts were determined from the analysis of the 31P NMR spectra acquired with magic angle spinning (MAS). The 1J(69/71Ga,31P) and ΔJ(69/71Ga, 31P) values, as well as their signs, were also determined; values of 1J(71Ga,31P) range from approximately 380 to 1590 Hz. Values of 1J(69/71Ga,31P) and ΔJ(69/71Ga,31P) calculated by using DFT have comparable magnitudes and generally reproduce experimental trends. Both the Fermi‐contact and spin‐dipolar Fermi‐contact mechanisms make important contributions to the 1J(69/71Ga,31P) tensors. The 31P NMR spectra of several adducts in solution, obtained as a function of temperature, are contrasted with those obtained in the solid state. Finally, to complement the analysis of NMR spectra for these adducts, single‐crystal X‐ray diffraction data for Br3Ga[P(p‐Anis)3] and I3Ga[P(p‐Anis)3] were obtained.  相似文献   

10.
The 1H and 13C NMR spectra of 1,2-dibromoethane-13C2 have been analyzed to determine the magnitude (38·9 Hz) and sign (positive) of 1J(C? C) relative to those of 3J(H? H) (positive). This type of coupling appears to be rather insensitive to the presence of bromine or methyl as substituents on the carbons.  相似文献   

11.
The olefins Ph2P(X)CH?CHR [X=lone pair, O, S, Ch3I; R?Ch3, ph, P(X)ph2] have been prepared and their 1H, 13C and 31P NMR spectra measured. trans 3J[P(IV)C] (range 18.3–25.7 Hz) is greater than cis 3J[P(IV)C] (range 6.9–11 Hz) but this relationship does not hold for P(III) compounds. In the 31P spectra the E isomer absorbs to higher field than the Z isomer for P(III) and P(IV) compounds. The 1H data are in accord with previous results; average substituent shielding coefficients for ph2P(X) substituted alkenes are reported.  相似文献   

12.
Analysis of the 13C NMR chemical shift and coupling constant data for a number of straight-chain aliphatic trialkylphosphines and their transition metal carbonyl complexes suggests that complexation leads to: (1) a deshielding of C(1) and an increase in 1J(13C31P), (2) a slight shielding of C(2) and a decrease in 2J(13C31P), and (3) little or no change in the chemical shift for C(3) and a slight increase in 3J(13C31P). Application of these rules to the assignment of the 13C NMR spectrum of P(butyl)3 led to conflict with prior work. A study of segmental motion in these derivatives via spin-lattine (T1) relaxation time measurements was therefore performed, and these data are in complete agreement with the proposed assignments. These generalizations must be applied with care, however, since the presence of either unsaturation or branching near the phosphorus can interfere with this pattern.  相似文献   

13.
1J(13C?13C) nuclear spin–spin coupling constants in derivatives of acetylene have been measured from natural abundance 13C NMR spectra and in one case (triethylsilyllithiumacetylene) from the 13C NMR spectrum of a 13C-enriched sample. It has been found that the magnitude of J(C?C) depends on the electronegativity of the substituents at the triple bond. The equation 1J(13C?13C) = 43.38 Ex + 17.33 has been derived for one particular series of the compounds Alk3SiC?CX, where X denotes Li, R3Sn, R3Si, R3C, I, Br or Cl. The 1J(C?C) values found in this work cover a range from 56.8 Hz (in Et3SiC?Li) to 216.0 Hz (in PhC?CCI). However, the 1J(C?C) vs Ex equation combined with the Egli–von Philipsborn relationship allows the calculation of the coupling constants in Li2C2 (32 Hz) and in F2C2 (356 Hz). These are probably the lowest and the highest values, respectively, which can be attained for 1J(CC) across a triple bond. The unusually large changes of the 1J(C?C) values are explained in terms of substituent effects followed by a re-hybridization of the carbons involved in the triple bond. INDO FPT calculations performed for two series of acetylene derivatives, with substituents varied along the first row of the Periodic Table, corroborate the conclusions drawn from the experimental data.  相似文献   

14.
The nuclear spin—spin coupling constants J(C,H) and J(C,D) have been measured over the temperature range 200–370 K for the methane isotopomers 13CH4, 13CH3D, 13CHD3 and 13CD4. The coupling constants increase with increasing temperature for any one isotopomer and decrease with increasing secondary deuterium substitution at any one temperature. The results are entirely attributable to intramolecular effects and the data have been fitted by a weighted least-squares regression analysis to a spin—spin coupling surface thereby yielding a value for 1Je(C,H), the coupling constant at equilibrium geometry, and values for the bond length derivatives of the coupling. We find that 1Je(C,H) = 120.78 (±0.05) Hz which is about 4.5 Hz smaller than the observed value in 13CH4 gas at room temperature. Results are also reported for J(H,D) in 13CH3D and 13CHD3 for which no temperature dependence was detected.  相似文献   

15.
The 13C, 1H spin–spin coupling constants for benzene and tropylium fluoroborate have been measured from the 13C NMR spectra of [D5]benzene and the [D6]tropylium ion using a new experimental technique which employs highly deuterated compounds and 2D-decoupling. For benzene the new data are in good agreement with earlier results. For the tropylium ion we find 1J = 166.79, 2J ? 0, 3J = 9.99 and 4J = (?)0.64 Hz. Secondary isotope effects for 13C chemical shifts, including one over four bonds, are reported.  相似文献   

16.
1J(15N13C) values obtained from FT 13C NMR spectra were measured for a number of 15N-enriched aniline derivatives and are found to exhibit varying degrees of dependence on the nature of the ring substituent. Theoretical calculations of 1J(15N13C) values for representative members of the systems examined were made using INDO parameters and a ‘sum-over-states’ perturbation approach. The calculated coupling constants are generally in fair agreement with experimental values when the integral products SN2(o)SC2(o) and (r?3)N(r?3)C have values of 34.437 au?6 and 2.770 au?6, respectively.  相似文献   

17.
A survey of the use of 187Os satellite subspectra in 1H and 31P{1H} spectra of triosmium carbonyl clusters is reported. By varying evolution delays in HMQC spectra of [Os3(µ‐H)2(CO)10] we have selectively extracted the values for 1J(Os,H) and 2J(Os,H), respectively. An analysis of the principal modes of phosphine coordination in triosmium clusters demonstrates that 31P{1H}187Os satellite subspectra are diagnostic for equatorial coordination [1J(Os,P) = 211–223 Hz] or for axial coordination (perpendicular to the plane of the cluster) [1J(Os,P) ≈ 147 Hz]. Chelating and bridging diphosphines yield 187Os satellite subspectra which are the sum of A2X and AA′X spin systems. If significant P–P coupling is present, the AA′X component requires simulation. All observed 2J(Os,P) trans‐equatorial couplings fall in the range 38–65 Hz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The synthesis of new 2,10-dichloro-6-aryloxy-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-sulfides 4 was achieved in two steps with high yields from the simple materials 5,5′-dichloro-2,2′-dihydroxydiphenyl-methane (1) and thiophosphoryl chloride (2) which produced the key intermediate 2,6,10-trichloro-12H-dibenzo[d,g][1,3,2]dioxaphosphocin 6-sulfide (3) . Treatment of 3 with substituted phenols under phase transfer catalytic (PTC) conditions led to members of 4 . Long range coupling [5J(P,H) = 3.6 Hz] was observed between phosphorus and one of the bridged methylene protons in 4 . A 13C nmr analysis revealed 2J(P,O,C), 3J(P,O,C) 4J(P,O,C) and 5J(P,O,C) couplings. All 31P nmr chemical shifts for thirteen members of these new heterocycles are reported for the first time. The nmr data are not totally definitive to confirm a boat-chair as the major conformer for the central eight-membered dioxaphosphocin ring, but such a conformer is tentatively suggested as favored.  相似文献   

19.
High‐resolution solid‐state 109Ag and 31P NMR spectroscopy was used to investigate a series of silver dialkylphosphite salts, Ag(O)P(OR)2 (R = CH3, C2H5, C4H9 and C8H17), and determine whether they adopt keto, enol or dimer structures in the solid state. The silver chemical shift, CS, tensors and |J(109Ag, 31P)| values for these salts were determined using 109Ag (Ξ = 4.652%) NMR spectroscopy. The magnitudes of J(109Ag, 31P) range from 1250 ± 10 to 1318 ± 10 Hz and are the largest reported so far. These values indicate that phosphorus is directly bonded to silver for all these salts and thus exclude the enol structure. All 31P NMR spectra exhibit splittings due to indirect spin–spin coupling to 107Ag (I = 1/2, NA = 51.8%) and 109Ag (I = 1/2, NA = 48.2%). The 1J(109Ag, 31P) values measured by both 109Ag and 31P NMR spectroscopy agree within experimental error. Analysis of 31P NMR spectra of stationary samples for these salts allowed the determination of the phosphorus CS tensors. The absence of characteristic P?O stretching absorption bands near 1250 cm?1 in the IR spectra for these salts exclude the simple keto tautomer. Thus, the combination of solid‐state NMR and IR results indicate that these silver dialkylphosphite salts probably have a dimer structure. Values of silver and phosphorus CS tensors as well as 1J(109Ag, 31P) values for a dimer model calculated using the density functional theory (DFT) method are in agreement with the experimental observations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Substituent effects on 199Hg1H and 199Hg13C spinspin coupling constants have been studied for neopentylmercury derivatives, (CH3)3CCH2HgR(or X), where R is covalently bonded Me, Et, t-Bu, neopentyl, and vinyl, and X is easily ionizable CN, Br, Cl, OCOCH3, and ONO2. Linear relationships exist between the methylene J(13CH) and 2J(HgH), 4J(HgC) and 2J(HgC) and 3J(HgC); but deviations from linearity occur for the chloride, bromide, acetate, and nitrate in the relationships between 2J(HgH) and 4J(HgH), 2J(HGH) and 2J(HGC). These deviations are discussed in terms of hyperconjugative pπdπ bonding between the methylene CH bonds and mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号