首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of 1-phenylphosphole (PP), 3-methyl-1-phenylphosphole (mPP), 3,4-dimethyl-1-phenylphosphole (dPP) and, in certain instances, 1-n-butyl-3,4-dimethylphosphole (dBP) with some transition metal chlorides and some metal-Cl-CO systems are reported. These reactions show that simple phospholes in general unexpectedly behave much like ordinary tertiary phosphines and that, unlike the reactions with Ni(II), Pd(II) and Pt(II), the complexes formed are conventional in most respects. However, a few unusual reactions were observed. For example, mPP partially reduces Ru(III) to give a mixed-valent Ru(III)-Ru(II) complex while PP reduces Ir(III) to Ir(I). From infrared spectroscopic studies of the square-planar Rh(I) complexes L2Rh(CO) Cl (L = phosphole), it appears that donor character decreases with decreasing substitution on the phosphole ring carbon atoms. Phosphorus-phenyl cleavage has been observed in reactions of 1-phenylphosphole with Rh-CO systems. The results are briefly discussed in relation to the behaviour of other phospholes in similar reactions and in the context of the electronic structure of phospholes.  相似文献   

2.
Complexes of composition L2MCl2 [M=Pt, R=H (I), Me (II), Ph (III)], and LMC12 [M=Pd, R=H (IV)] are prepared by reaction of 4,6-R2-2,5-diphenyl-1,3,2,5-dioxaboraphosphorinanes (L) with MCl2. Far-IR and31P NMR spectroscopy are used to demonstrate that I is cis whereas II and III are trans complexes in the solid. The conformational behavior of I is studied by31P and1H NMR. The asymmetric form of I exhibits anomalous stability.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2309–2312, October, 1991.  相似文献   

3.
Summary The general course of reactions between [MCl4 ]2– (M = Pd, Pt) and primary and secondary phosphines containing phenyl, cyclohexyl, or 2-cyanoethyl groups, in polar solvents, is to yield L3MCl2 complexes which are probably ionic [L3MCl]+Cl These compounds can be isolated and characterized in the solid state, but in solution they are labile, and tend to react to give phosphines plus L2 MCI2.  相似文献   

4.
《Polyhedron》1987,6(5):921-929
Complexes of the terdentate ligands bis[2-diphenylphosphino)ethyl]benzylamine (DPBA) and bis[2-(diphenylarsino)ethyl]benzylamine (DABA) with Co(II), Ni(II), Pd(II), Pt(II), Rh(III), Ir(III), Rh(I) and Ir(I) are reported. The ligand DPBA reacts with Co(II) ion to form two types of complexes: a high-spin, paramagnetic, tetrahedral Co(II) complex of composition [CoCl(DPBA)]Cl and a low-spin, paramagnetic, square-planar complex of composition [CoBr(DPBA)]B(C6H5)4. The reaction of DPBA with Ni(II) ion in methanol yields low-spin, diamagnetic, square-planar complexes of type [NiX(DPBA)]Y [X = Cl, Br or I; Y = Cl or B(C6H5)4]. Four-coordinate, square-planar, cationic complexes of type [MY(L+[M = Pd(II), Pt(II), Rh(I) or Ir(I); Y = Cl or P(C6H5)3; L = DPBA or DABA], were obtained on reaction of L with various starting materials containing these metal ions. Reaction of DPBA and DABA with rhodium and iridium trichlorides gave octahedral, neutral complexes of general formula [MCl3(L)] (M = Rh or Ir, L = DPBA or DABA). All the complexes were characterized on the basis of their elemental analysis, molarconductance data, magnetic susceptibilities, electronic spectra, IR spectral measurements, and1H and31P-{1H} NMR spectral data.  相似文献   

5.
Metal Complexes of Dyes. Phosphine-Nickel, Palladium, Platinum Complexes and Pentamethylcyclopentadienyl Rhodium and Iridium Complexes of 2,2′-Dihydroxyazoarenes The terdentate dianions of 2,2′-dihydroxyazobenzene (L1H), 1-(2-hydroxy-4-nitrophenylazo)-2-naphthol (L2H), 1-(2-hydroxy-5-nitrophenylazo)-2-naphthol (L3H) and 1-phenyl-3-methyl-4-(2-hydroxy-5-nitrophenylazo)-5-pyrazolone (L4H) form with chloro bridged complexes [(R3P)MCl2]2 (M = Pd, Pt; R = Ph, nBu), [(n5-C5Me5)MCl2]2 (M = Rh, Ir) and with (nBu3P)2NiCl2 the metal dye complexes (R3P)ML (M = Ni, Pd, Pt) and (C5Me5)ML (M = Rh, Ir). The structures of (Ph3P)PtL1 and (nBu3P)PdL3 have been determined by X-ray diffraction. For the complexes (n5-C5Me5)ML (M = Rh, Ir) with asymmetric metal centers two diastereoisomers are detected by nmr spectroscopy which points to the ?hydrazone”? form of the azo ligand with a pyramidalized N-atom.  相似文献   

6.
Novel neutral biimidazolate or bibenzimidazolate palladium(II) and platinum(II) complexes of the type M(NN)2(dpe) [M = Pd, Pt; (NN)22? = BiIm2?, BiBzIm2?. dpe = 1,2-bis(diphenylphosphino) ethane] have been obtained by reacting MCl2(dpe) with TI2(NN)2. Complexes M(NN)2(dpe) which are Lewis bases react with HClO4 or [M(dpe)(Me2CO)2](ClO4)2 to yield, respectively, mononuclear cationic complexes of general formula [M{H2(NN)2](dpe) (M = Pd, Pt; H2(NN)2 = H2BiIm, H2BiBzIm) and homobinuclear palladium(II) or platinum(II) cationic complexes of the type [M2{μ - (NN)2}(dpe)2](ClO4)2. Reactions of M(BiBzIm)(dpe) with [Rh(COD) (Me2CO)X](ClO4) render similar heterobinuclear palladium(II)-rhodium(I) and platinum(II)-rhodium(I) cationic complexes, of general formula [(dpe)M(μ-BiBzIm)Rh(COD)](ClO4) (M = Pd, Pt; COD = 1,5-cyclooctadiene). Di- and mono-carbonyl derivatives [(dpe)M(μ-BiBzIm)Rh(CO)L](ClO4) (M = Pd, Pt; L = CO, PPh3) have also been prepared. The structures of the resulting complexes have been elucidated by conductance studies and IR spectroscopy.  相似文献   

7.
Binuclear halogen-bridged complexes of the type (C5F5)2Pd(μ-Cl)2ML2 (M  Ni, Pd (L2  dpe), Pt (L  PEt3)] have been prepared by reaction of cis-Pd(C6F5)2(PhCN)2 with the corresponding halo complexes, MCl2L2, in dichloromethane, IR and NMR structural data are discussed.  相似文献   

8.
Synthesis and Structure of Crown Ether Complexes of Potassium Hexachlorodipalladate(II) and -diplatinate(II) K2[MCl4] (M ? Pd, Pt) reacts with an excess of crown ether 18-crown-6 in water to give the crown ether complexes of potassium hexachlorodipalladate(II) and -diplatinate(II) [K(18-cr-6)]2[M2Cl6] (M ? Pd, 1 ; M ? Pt, 3 ), respectively, and in methylene chloride to give those of potassium tetrachloropalladate(II) and -platinate(II) [K(18-cr-6)]2[MCl4] ( 1 ) (M ? Pd, 2 ; M ? Pt, 4 ), respectively. 1 - 4 are characterized by microanalysis, NMR (1H, 13C), and vibrational spectroscopy. The X-ray structure analyses of the isotypic complexes 1 (P21/c; a = 10,9678(8), b = 8,2991(7), c = 22,469(2) Å, β = 98,523(5)°; Z = 2) and 3 (P21/c; a = 10,934(3), b = 8.376(3), c = 22,410(5) Å, β = 98,77(3)°; Z = 2) reveal [M2Cl6]2? anions of nearly D2h symmetry and [K(18-cr-6)]+ cations, in which the distance of K+ to the mean plane of the crown ether defined by its six oxygen atoms amounts to 0,830(4) Å in 1 and 0,821(2) Å in 3 , respectively. There are tight contacts between cations and anions (d(K-Cl): 3,341(2)/3,260(2) Å ( 1 ); 3,348(4)/3,259(4) Å ( 3 )).  相似文献   

9.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

10.
Two triphenylphosphine derivatives, diethyl [4-(diphenylphosphanyl)benzyl]phosphonate (3a) and tetraethyl {[5-(diphenylphosphanyl)-1,3-phenylene]dimethylene}bis(phosphonate) (3b), and also the corresponding free acids 4a and 4b were prepared. These ligands were characterized by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. A full set of their Pd(II) and Pt(II) complexes of the general formula [MCl2L2] and one dinuclear complex trans-[Pd2Cl4(3a)2] were synthesized and their isomerization behaviour in solution was studied. The complexes were characterized by 1H, 13C, 31P and 195Pt NMR spectroscopy, mass spectrometry and far-IR spectroscopy. The X-ray structures of all complexes with 3a or 3b have usual slightly distorted square-planar geometry on the metal ion. Salts of phosphonic acids 4a and 4b and their complexes are freely soluble in aqueous solution; therefore, they can be potentially useful in aqueous or biphasic catalysis.  相似文献   

11.
Abstract

Pentacarbonylphospholemetal(0) and cis-tetracarbonylbis(phosphole)metal(0) complexes were synthesized from the thermal reaction of M(CO)3(THF) and M(CO)4(COD) (M: Cr, Mo, W) with corresponding phosphole (1-phenyl-3,4-dimethylphosphole, 1-phenyl-3-methylphosphole, and 1-phenylphosphole). These complexes were isolated as orange crystals by column chromatography on silicagel at 253 K and crystallization from n-hexane at 223 K and characterized by means of IR and NMR (1H, 13C, and 31P). Spectroscopic data shows that the phosphole is coordinated to the transition metal through its phosphorus atom rather than through the conjugated diene unit in the both types of complexes. The tetracarbonylbis(phosphole)metal(0) complexes were found to have cis-arrangement of two phosphole ligands. Comparing 13C-NMR chemical shifts of the complexes with the free ligands, one can deduce that the involvement of the phosphorus atom in the ring π-electron delocalization is drastically reduced upon coordination. This is attributed to the stronger [sgrave]-donation but weaker π-accepting ability of the phosphorus atom in the phosphole ligands compared to the carbonyl groups.  相似文献   

12.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

13.
Summary Platinum(II) and palladium(II) chloride complexes with purine, pyrimidine (pyrimid),N-ethylimidazole(N-EtIm) andN-propylimidazole(N-PropIm) ligands have been prepared and characterized by analysis and spectroscopic methods. The compounds have general formula M(L1)(L2)Cl2 where M=PtII, PdII; L1=purine or pyrimid, L2=N-EtIm orN-PropIm, except the complexes Pt(purine)(pyrimid)Cl2 and [Pd(purine)(pyrimid)2Cl]Cl and [Pt(purine)2 (N-propIm)Cl]Cl·2H2O.  相似文献   

14.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

15.
New Pd(II) and Pt(II) 3,6-bis(2′-pyridyl)pyridazine (dppn) mononuclear complexes of the type M(dppn)Cl2 were prepared and characterized. From M(dppn)Cl2, the bimetallic homonuclear complexes M(dppn)MCl4 were prepared by reaction with Pd(PhCN)2Cl2 or K2PtCl4. Bimetallic heteronuclear species of the type M(dppn)M′Cl4, were prepared reacting the mononuclear complexes with the stoichiometric amount of M′Cl2 (M′ = Cu, Co, Ni). All the described reaction give product in high yield. The isolated compounds, almost completely insoluble in most organic solvents, were characterized by elemental analysis, IR, ESR, reflectance spectra, and magnetic moment measurements. On the basis of these data the geometries around the metals are discussed.  相似文献   

16.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

17.
Three new palladium(II) complexes of formula [Pd(bipy)(XX)] [where bipy is 2,2′-bipyridine and XX are dianions of catechol (CAT), 4-tert-butylcatechol (BCAT) and 3,4-dimercaptotoluene (DMT)] have been prepared and characterized by physical methods. A ligand-ligand charge-transfer band in each complex was observed between 16–21 kK (εmax = 1500–2200 1 mol?1 cm?1) which is negatively solvochromic. These palladium(II) complexes in dimethylformamide photosensitize the formation of singlet oxygen and their ability to photosensitize triplet oxygen (3O2) to singlet oxygen (1O2) are compared with analogous platinum(II) complexes. In addition, 2,2′-bipyridine-platinum(II) complex of 3,4-dimercaptotoluene also undergoes self-sensitized photooxidation.  相似文献   

18.
Abstract

Ni(II), Pd(II), and Pt(II) complexes of NO2CHCS2 ?2 have been prepared, and their i.r and u.v spectra described. Spectroscopic evidence is presented to substantiate the existence of the new species K2Ni(NO2CHCS2)2S, a dithio-perthio carboxylate complex.  相似文献   

19.
Two new complexes [{Zn(L1)(μ-OAc)Zn(CH3CHOHCH3)}2] and [Ni(L2)(H2O)(CH3OH)] with asymmetric Salamo-type ligands (H3L1 and H2L2) are synthesized and structurally characterized. In the Zn(II) and Ni(II) complexes, the terminal and central Zn(II) atoms are found to have slightly distorted square pyramidal and trigonal bipyramidal symmetries respectively, while the Ni(II) atom is hexa-coordinated and has a slightly distorted octahedral symmetry. Interestingly, a self-assembling continual zigzag 1D chain is formed by intermolecular hydrogen bonds in the Ni(II) complex. Furthermore, the Zn(II) and Ni(II) complexes in the ethanol solution show intense photoluminescence.  相似文献   

20.
The synthesis and solution structures of new four- and five-coordinate phosphine and arsine complexes of Pt and Pd containing the trichlorostannate ligand are described. Complexes containing two and three SnCl?3-ligands have been identified from their 31P-, 119Sn- and 195Pt-NMR. spectra. The complexes trans-[M (SnCl3)2L2] (M = Pt, L-PEt3, PPr3, AsEt3; M = Pd, L = AsEt3) show unexpectedly large 2J(119Sn, 117Sn)-values (34,674–37,164 Hz) with the trans-orientation of these spins playing an important role. The heteronuclear coupling constant 2J(119Sn, 31P) in the five-coordinate cationic complexes [Pt(SnCl3)(P(o-AsPh2? C6H4)3)]+ and [Pt(SnCl3)(As(o-PPh2? C6H4)3)]+ also shows a geometric dependence. New five-coordinate anionic complexes of type [M (SnCl3)3L2]? (M = Pd, Pt; L = PEt3, AsEt3) may be prepared via addition of three mol-equiv. of SnCl2 and one mol-equiv. of (PPN)Cl to [MCl2L2] in acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号