首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Ab initio calculations using the GAMESS program package in the atomic basis TZV (Fe: (14s, 11p, 6d)/[10s, 8p, 3d]; C, O: (11s, 6p)/[5s, 3p]) were performed with account taken of the correlation with the second-order Möller–Plesset (MP2) perturbation theory to predict a new conformer Fe(CO)4 (with D 4h symmetry). This conformer has a square planar configuration in the ground singlet electronic state and is a mild electrophile produced by dissociation of Fe(CO)5 along the axial Fe–C bond. The process of nucleation of iron nanoparticles Fe(CO)5 + Fe(CO)4 Fe2(CO)9 is supposed to occur in two stages. The first stage is an orbital-controlled reaction which should be monitored as an increase in medium polarity and temperature. It should proceed with participation of only one of the stable conformers of the nucleophile Fe(CO)5, namely, a mild conformer with square-pyramidal structure (C 4v ) rather than a hard but energetically more advantageous conformer with trigonal–bipyramidal structure (D 3h ). The structure of a prereaction complex was discussed.  相似文献   

4.
The photochemistry of Fe(CO)5 (5) has been studied in heptane, supercritical (sc) Ar, scXe, and scCH4 using time-resolved infrared spectroscopy (TRIR). 3Fe(CO)4 ((3)4) and Fe(CO)3(solvent) (3) are formed as primary photoproducts within the first few picoseconds. Complex 3 is formed via a single-photon process. In heptane, scCH4, and scXe, (3)4 decays to form (1)4 x L (L = heptane, CH4, or Xe) as well as reacting with 5 to form Fe2(CO)9. In heptane, 3 reacts with CO to form (1)4 x L. The conversion of (3)4 to (1)4 x L has been monitored directly for the first time (L = heptane, kobs = 7.8(+/- 0.3) x 10(7) s(-1); scCH4, 5(+/- 1) x 10(6) s(-1); scXe, 2.1(+/- 0.1) x 10(7) s(-1)). In scAr, (3)4 and 3 react with CO to form 5 and (3)4, respectively. We have determined the rate constant (kCO = 1.2 x 10(7) dm3 mol(-1) s(-1)) for the reaction of (3)4 with CO in scAr, and this is very similar to the value obtained previously in the gas phase. Doping the scAr with either Xe or CH4 resulted in (3)4 reacting with Xe or CH4 to form (1)4 x Xe or (1)4 x CH4. The relative yield, [(3)4]:[3] decreases in the order heptane > scXe > scCH4 > scAr, and pressure-dependent measurements in scAr and scCH4 indicate an influence of the solvent density on this ratio.  相似文献   

5.
The 1H and 13C NMR spectra of the heterobimetallic compound (CO)4Fe(μ-AsMe2)Mo(CO)2(C5H5) reveal three different fluxional processes.  相似文献   

6.
7.
Lü Kai 《结构化学》1999,18(2):114-118
1INTRODUCTIONHomo dinuclearmetalcarbonylclustershavebenstudiedwidelyfortheirnovelstructuresandusesinorganicsynthesis〔1〕.Examp...  相似文献   

8.
The reactons of (CO2)2+ and (CO)2+ with various additives have been investigated using the NBS high-pressure photoionization mass spectrometer at total pressures of 0.4–1.0 torr of either CO2 or CO. The additives include CH4, CD4, C2H2, O2, H2O, 15,14N2O, and CO in both CO2 and 13CO2. Second- and third-order rate coefficients based on an ambipolar diffusion model are reported for 25 separate reaction pairs at 295°K, as well as sequential cationic reaction mechanisms. An approximate value of 225 ± 3 kcal/mol (941 ± 13 kJ/mol) was derived for ΔHf (CO)2+ based on the kinetics observed in various CO-additive mixtures. Some projections regarding the utility of the data under other conditions are also included.  相似文献   

9.
Conclusions A study was carried out on the competitive reactions of CICH2CH2ClCH2CHClC4H9 (A) generated from 1,3,3,5-tetrachlorononane by the action of Fe(CO)5, Mo(CO)6, and Mn2(CO)10 systems. The Mn2(CO)10 systems were most efficient for obtaining the reaction of (A) radicals with hydrogen donors, while the Fe(CO)5 systems were most efficient for obtaining rearrangements of (A) radicals with 1,5- and 1,6-hydrogen migration and subsequent reaction with a chlorine donor and Mo(CO)6 and Mn2(CO)10 systems were most efficient in effecting disproportionation of (A) radicals.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2623–2626, November, 1984.  相似文献   

10.
A synthetic cycle for the CO(2)-to-CO conversion (with subsequent release of CO) based on iron(II), a redox-active pydridinediimine ligand (PDI), and an O-atom acceptor is reported. This conversion is a passive-type ligand-based reduction, where the electrons for the CO(2) conversion are supplied by the reduced PDI ligand and the ferrous state of the iron is conserved.  相似文献   

11.
12.
The experimental charge densities in the binary carbonyls Cr(CO)(6) (1), Fe(CO)(5) (2), and Ni(CO)(4) (3) have been investigated on the basis of high-resolution X-ray diffraction data collected at 100 K. The nature of the metal-ligand interactions has been studied by means of deformation densities and by topological analyses using the Atoms in Molecules (AIM) approach of Bader. A detailed comparison between the experimental results and theoretical results from previous work and from gas-phase and periodic DFT/B3LYP calculations shows excellent agreement, both on a qualitative and quantitative level. An examination of the kappa-restricted multipole model (KRMM) for Cr(CO)(6), using theoretically derived structure factors, showed it to provide a somewhat worse fit than a model with freely refined kappa' values. The experimental atomic graphs for the metal atoms in 2 and 3 were found to be dependent on the multipole model used for that atom. In the case of compound 2, restriction of the multipole populations according to idealized site symmetry of D(3h) gave an atomic graph in essential agreement with the theoretical gas-phase study. For compound 3, all multipole models fail to reproduce the atomic graph obtained from the theoretical gas-phase study. The atomic quadrupole moments for the C atoms in all compounds were consistent with significant pi back-donation from the metal atoms.  相似文献   

13.
14.
Abstract

Halogen atom transfer from CpMo(CO)3X (X = Cl, Br and I) to CpW(CO)3 ? forming CpMo(CO)3 ? and CpW(CO)3X occurs with a first-order dependence on the oxidant and the reductant. The rate constants show a very small dependence on the identity of X, suggesting a mechanism involving nucleophilic attack by CpW(CO)3 ? on a carbonyl of CpMo(CO)3X.  相似文献   

15.
The electrochemical reduction of (benzophenone)Cr(CO)3 and (benzophenone)[Cr(CO)3]2 in hthe presence of a series of alkyl chlorides which are more difficult to reduce, has been carried out in N,N-dimethylformamide on a mercury pool cathode. When methyl chloride and p-cyanobenzyl chloride are used as alkylating agents, complexed monoalkylated ethers are exclusively obtained as substitution products, in yields ranging from 36 to 54%. Complexed alkylated alcohols aer isolated as the major products when (benzophenone)Cr(CO)3 is reduced in the presence of benzyl-chloride and its 2,3,5-trimethyl derivative, in 48 and 44% yields, respectively. These last results suggest the intermediate formation of a charge transfer complex between the aromatic ring of the electrophile and the complexed ketone.  相似文献   

16.
17.
Decarbonylation of the unsupported clusters Rh4(CO)12, Rh2Co2(CO)12, RhCo3(CO)12 and Co4(CO)12 in a stream of hydrogen has been investigated by temperature programmed decomposition. Kinetic parameters for the thermal decomposition are presented, and the stabilities of the clusters are discussed. The profile for evolution of CO from Rh4(CO)12 indicates that a stable intermediate is formed. In all four cases methane is formed stepwise until most of the CO groups are evolved.  相似文献   

18.
Conclusions The photochemical reactions of (CO)2(PPh3)MnC5H4Fe(CO)2C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)2C5H5 with PPh3 gave the products of replacing the CO on the Fe atom by PPh3: respectively (CO)2(PPh3)MnC5H4Fe (CO)(PPh3)C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)(PPh3)C5H5.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2813–2815, December, 1977.  相似文献   

19.
New Phosphorus-bridged Transition Metal Carbonyl Complexes. The Crystal Structures of [Re2(CO)7(PtBu)3], [Co4(CO)10(PtBu)2], [Ir4(CO)6(PtBu)6], and [Ni4(CO)10(PiPr)6], (PtBu)3 reacts with [Mn2(CO)10], [Re2(CO)10], [Co2(CO)8] and [Ir4(CO)12] to form the multinuclear complexes [M2(CO)7(PtBu)3] (M = Re ( 1 ), Mn ( 5 )), [Co4(CO)10(PtBu)2] ( 2 ) and [Ir4(CO)6(PtBu)6] ( 3 ). The reaction of (PiPr)3 with [Ni(CO)4] leads to the tetranuclear cluster [Ni4(CO)10(PiPr)6] ( 4 ). The complex structures were obtained by X-ray single crystal structure analysis: ( 1 : space group P1 (Nr. 2), Z = 2, a = 917.8(3) pm, b = 926.4(3) pm, c = 1 705.6(7) pm, α = 79.75(3)°, β = 85.21(3)°, γ = 66.33(2)°; 2 : space group C2/c (Nr. 15), Z = 4, a = 1 347.7(6) pm, b = 1 032.0(3) pm, c = 1 935.6(8) pm, β = 105.67(2)°; 3 : space group P1 (Nr. 2), Z = 4, a = 1 096.7(4)pm, b = 1 889.8(10)pm, c = 2 485.1(12) pm, α = 75.79(3)°, β = 84.29(3)°, γ = 74.96(3)°; 4 : space group P21/c (Nr. 14), Z = 4, a = 2 002.8(5) pm, b = 1 137.2(8) pm, c = 1 872.5(5) pm, β = 95.52(2)°).  相似文献   

20.
Gas phase infrared spectroscopic investigations of the CO vibration of jet-cooled NiCO, Ni(CO)3(13CO), and Ni(CO)3(C18O) are reported. The spectra were obtained using a recently assembled pulsed-discharge slit-jet IR diode laser spectrometer. The rotationally resolved spectrum of NiCO was collected as it was formed in the discharge, while the spectra of Ni(CO)3(13CO) and Ni(CO)3(C18O) were recorded as they were destroyed. For NiCO, band origins of 2010.692 89(34) and 2010.645 28(23) cm(-1) were measured, along with values of B0=0.151 094(7) and 0.149 597(6) cm(-1) and B(1)=0.150 244(7) and 0.148 742(6) cm(-1) for 58NiCO and 60NiCO, respectively. The B0 values for these isotopologs were used to determine the two bond lengths in NiCO, giving r0 (Ni-C)=1.641(40) A and r0 (C-O)=1.193(53) A, in agreement with recent microwave measurements. The constants determined for Ni(CO)3(13CO) were upsilon0=2022.075 753(95) cm(-1), B"=0.034 736(2) cm(-1), and B'=0.034 688(2) cm(-1). For Ni(CO)3(C18O), upsilon0=2021.936 83(18) cm(-1), B"=0.033 764(4) cm(-1), and B'=0.033 710(4) cm(-1) were obtained. From these rotational constants, bond lengths of r0 (Ni-C)=1.839+/-0.007 A and r0 (C-O)=1.121+/-0.010 A were obtained. These values are discussed in relation to the bond lengths measured by electron and x-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号