首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-pressure Raman spectroscopic study of phase transitions in thiourea is reported. The changes in the Raman spectra with increasing and decreasing pressure have been followed to a maximum pressure of approximately 11 GPa. We observe several changes in the spectra including splitting of modes, appearance of new modes, and sudden change in the slope of the frequency-pressure curve at several pressures. On the basis of this study, we propose the existence of three more transitions in this system to phases VII, VIII, and IX at approximately 1, 3, and 6.1 GPa, respectively, in addition to the V-VI phase transition at 0.35 GPa reported earlier. All the transitions have been found to be completely reversible. We interpret these changes in terms of symmetry-lowering phase transitions.  相似文献   

2.
The refractive index of H2O ice has been measured to 120 GPa at room temperature using reflectivity methods. The refractive index increases significantly with pressure on initial compression and exhibits small changes with pressure at previously identified phase transitions. Pressure dependencies of the molecular polarizability show changing slopes in different pressure regions. A general molar refractivity analysis of this change in slope reveals features at 60 GPa due to the onset of the ice VII-X transition. Band gap closure in H2O ice is constrained by the dispersion data using a single oscillator dielectric model. Sample thickness measurements obtained from interference patterns yield pressure-volume relations in excellent agreement with those measured by x-ray diffraction.  相似文献   

3.
The phase diagram and polymorphism of oxygen at high pressures and temperatures are of great interest to condensed matter and earth science. X-ray diffraction and Raman spectroscopy of oxygen using laser and resistively heated diamond anvil cells reveal that the molecular high-pressure phase ε-O(2), which consists of (O(2))(4) clusters, reversibly transforms in the pressure range of 44 to 90 GPa and temperatures near 1000 K to a new phase with higher symmetry. The data suggest that this new phase (η') is isostructural to a phase η reported previously at lower pressures and temperatures, but differs from it in the P-T range of stability and type of intermolecular association. The melting curve increases monotonically up to the maximum pressures studied (~60 GPa). The structure factor of the fluid measured as a function of pressure to 58 GPa shows continuous changes toward molecular dissociation.  相似文献   

4.
We report a study of aqueous solutions of poly(vinylalcohol) and its hydrogel by thermal conductivity, κ, and specific heat measurements. In particular, we investigate (i) the changes in the solution and the hydrogel at 0.1 MPa observed in the 350-90 K range and of the frozen hydrogel at 130 K observed in the range from 0.1 MPa to 1.3 GPa, and (ii) the nature of the pressure collapse of ice in the frozen hydrogel and kinetic unfreezing on heating of its high density water at 1 GPa. The water component of the polymer solution on cooling either first phase separates and then freezes to hexagonal ice or freezes without phase separation and the dispersed polymer chains freeze-concentrate in nanoscopic and microscopic regions of the grain boundaries and grain junctions of the ice crystals in the frozen state of water in the hydrogel. The change in κ with temperature at 1 bar is reversible with some hysteresis, but not reversible with pressure after compression to 0.8 GPa at 130 K. At high pressures the crystallized state collapses showing features of κ and specific heat characteristic of formation of high density amorphous solid water. The pressure of structural collapse is 0.08 GPa higher than that of ice at 130 K. The slowly formed collapsed state shows kinetic unfreezing or glass-liquid transition temperature at 140 K for a time scale of 1 s. Comparison with the change in the properties observed for ice shows that κ decreases when the polymer is added.  相似文献   

5.
High pressure and low temperature experiments with CO(2) hydrate were performed using diamond anvil cells and a helium-refrigeration cryostat in the pressure and temperature range of 0.2-3.0 GPa and 280-80 K, respectively. In situ x-ray diffractometry revealed that the phase boundary between CO(2) hydrate and water+CO(2) extended below the 280 K reported previously, toward a higher pressure and low temperature region. The results also showed the existence of a new high pressure phase above approximately 0.6 GPa and below 1.0 GPa at which the hydrate decomposed to dry ice and ice VI. In addition, in the lower temperature region of structure I, a small and abrupt lattice expansion was observed at approximately 210 K with decreasing temperature under fixed pressures. The expansion was accompanied by a release of water content from the sI structure as ice Ih, which indicates an increased cage occupancy. A similar lattice expansion was also described in another clathrate, SiO(2) clathrate, under high pressure. Such expansion with increasing cage occupancy might be a common manner to stabilize the clathrate structures under high pressure and low temperature.  相似文献   

6.
We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109±29 A?(3), primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 5(12)6(2) water cages in MH-I to 4(3)5(12)6(3) cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures.  相似文献   

7.
A series of extended reversible phase transitions at approximately 0.1, 1.5, 2.0, and approximately 5 GPa was observed for the first time in the crystals of dl-cysteine by Raman spectroscopy. These are the first examples of the phase transitions induced by increasing pressure in the racemic crystal of an amino acid. In the crystals of the orthorhombic l-cysteine, a sequence of reversible structural changes in the pressure range between 1.1 and 3 GPa could be observed by Raman spectroscopy, instead of a single sharp phase transition at 1.9 GPa reported previously in ( Moggach, et al. Acta Crystallogr. 2006, B62, 296- 309 ). The role of the movements of the side -CH 2SH groups and of the changes in the hydrogen-bonding type in dl- and l-cysteine during the phase transitions with increasing pressure is discussed and compared with that on cooling down to 3 K.  相似文献   

8.
High-pressure behavior of tetramethylsilane, one of the Group IVa hydrides, was investigated by Raman scattering measurements at pressures up to 142 GPa and room temperature. Our results revealed the phase transitions at 0.6, 9, and 16 GPa from both the mode frequency shifts with pressure and the changes of the full width half maxima of these modes. These transitions were suggested to result from the changes in the inter- and intra-molecular bonding of this material. We also observed two other possible phase transitions at 49-69 GPa and 96 GPa. No indication of metallization in tetramethylsilane was found with stepwise compression to 142 GPa.  相似文献   

9.
Low-temperature and high-pressure experiments were performed on the filled ice Ic structure of hydrogen hydrate at previously unexplored conditions of 5-50 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ x-ray diffractometry revealed that the cubic filled ice Ic structure transformed to tetragonal at low temperatures and high pressures; the axis ratio of the tetragonal phase changed depending on the pressure and temperature. These results were consistent with theoretical predictions performed via first principle calculations. The tetragonal phase was determined to be stable above 20 GPa at 300 K, above 15 GPa at 200 K, and above 10 GPa at 100 K. Further changes in the lattice parameters were observed from about 45-50 GPa throughout the temperature region examined, which suggests the transformation to another high-pressure phase above 50 GPa. In our previous x-ray study that was performed up to 80 GPa at room temperature, a similar transformation was observed above 50 GPa. In this study, the observed change in the lattice parameters corresponds to the beginning of that transformation. The reasons for the transformation to the tetragonal structure are briefly discussed: the tetragonal structure might be induced due to changes in the vibrational or rotational modes of the hydrogen molecules under low temperature and high pressure.  相似文献   

10.
The mixed‐valence complex Fe3O(cyanoacetate)6(H2O)3 ( 1 ) has been studied by single‐crystal X‐ray diffraction analysis at pressures up to 5.3(1) GPa and by (synchrotron) Mössbauer spectroscopy at pressures up to 8(1) GPa. Crystal structure refinements were possible up to 4.0(1) GPa. In this pressure range, 1 undergoes two pressure‐induced phase transitions. The first phase transition at around 3 GPa is isosymmetric and involves a 60° rotation of 50 % of the cyanoacetate ligands. The second phase transition at around 4 GPa reduces the symmetry from rhombohedral to triclinic. Mössbauer spectra show that the complex becomes partially valence‐trapped after the second phase transition. This sluggish pressure‐induced valence‐trapping is in contrast to the very abrupt valence‐trapping observed when compound 1 is cooled from 130 to 120 K at ambient pressure.  相似文献   

11.
Lattice parameters of a synthetic powder sample of Ca0.35Sr0.65TiO3 perovskite have been determined by the method of Le Bail refinement, using synchrotron X-ray diffraction patterns collected at pressures up to 15.5 GPa with a membrane-driven diamond anvil cell. At ambient conditions, diffraction data were consistent with the I4/mcm structure reported previously in the literature for the same composition. Diffraction data collected at high pressures were consistent with tetragonal (or, at least, pseudo-tetragonal) lattice geometry, and no evidence was found for the development of any of the orthorhombic structures identified in other studies of (Ca, Sr)TiO3 perovskites. Additional weak reflections, which could not be accounted for by the normal I4/mcm perovskite structure, were detected in diffraction patterns collected at pressures of 0.9-2.5 GPa, and above ∼13.5 GPa, however. Small anomalies in the evolution of unit cell volume and tetragonal strain were observed near 3 GPa, coinciding approximately with breaks in slope with increasing pressure of bulk and shear moduli for a sample with the same composition which had previously been reported. The anomalies could be due either to new tetragonal↔tetragonal/pseudo-tetragonal phase transitions or to subtle changes in compression mechanism of the tetragonal perovskite structure.  相似文献   

12.
Acoustic properties of the fluorinated copolymer Kel F-800 were determined with Brillouin spectroscopy up to pressures of 85 GPa at 300 K. This research addresses outstanding issues in high-pressure polymer behavior, as to date the acoustic properties and equation of state of any polymer have not been determined above 20 GPa. We observed both longitudinal and transverse modes in all pressure domains, allowing us to calculate the C(11) and C(12) moduli, bulk, shear, and Young's moduli, and the density of Kel F-800 as a function of pressure. We found the behavior of the polymer with respect to all parameters to change drastically with pressure. As a result, we find that the data are best understood when split into two pressure regimes. At low pressures (less than ~5 GPa), analysis of the room temperature isotherm with a semi-empirical equation of state yielded a zero-pressure bulk modulus K(o) and its derivative K(0) (') of 12.8 ± 0.8 GPa and 9.6 ± 0.7, respectively. The same analysis for the higher pressure data yielded values for K(o) and K(0) (') of 34.9 ± 1.7 GPa and 5.1 ± 0.1, respectively. We discuss this significant difference in behavior with reference to the concept of effective free volume collapse.  相似文献   

13.
We present new experimental data on the liquidus of ice polymorphs in the H(2)O-NH(3) system under pressure, and use all available data to develop a new thermodynamic model predicting the phase behavior in this system in the ranges (0-2.2 GPa; 175-360 K; 0-33 wt?% NH(3)). Liquidus data have been obtained with a cryogenic optical sapphire-anvil cell coupled to a Raman spectrometer. We improve upon pre-existing thermodynamic formulations for the specific volumes and heat capacities of the solid and liquid phase in the pure H(2)O phase diagram to ensure applicability of the model in the low-temperature metastable domain down to 175 K. We compute the phase equilibria in the pure H(2)O system with this new model. Then we develop a pressure-temperature dependent activity model to describe the effect of ammonia on phase transitions. We show that aqueous ammonia solutions behave as regular solutions at low pressures, and as close-to-ideal solutions at pressure above 600 MPa. The computation of phase equilibria in the H(2)O-NH(3) system shows that ice III cannot exist at concentrations above 5-10 wt?% NH(3) (depending on pressure), and ice V is not expected to form above 25%-27% NH(3). We eventually address the applications of this new model for thermal and evolution models of icy satellites.  相似文献   

14.
Isothermal compression experiments on water have been performed between 0 to 80 degrees C and up to 1.3 GPa pressure. The compressibilities derived from the water compression experiments reveal a nonsmooth PVT behavior forming two anomaly boundaries. These boundaries originate at the melting line of ice III at about 0.25 GPa/-20 degrees C, and of ice VI at about 0.8 GPa/13 degrees C. Both boundaries have a positive sloped course separating three areas of different PVT properties of water. However, this P-T topology is obscured by an unresolved complication in the temperature range of 40-60 degrees C, which allows different topological interpretations of the data. As a cross-check for the compression experiment the dehydration boundary of sodium chloride-dihydrate (NaCl.2H2O) has been determined up to 1.5 GPa. The dehydration curve of NaCl.2H2O which traverses the two anomaly boundaries shows two inflections at the intersection, at 0.27 GPa/12 degrees C and at 0.77 GPa/22 degrees C, respectively. While the isothermal compressibility curves as well as the dP/dT course of the two anomaly boundaries give evidence of two densifications of water, the slope analysis of the inflections of the NaCl-2H2O dehydration curve suggests that the entropy change plays an important role. A recent model of water at high pressure conditions proposes a gradual structural transition from a low density water (LDW) at low pressures to a high density water (HDW) at high pressures. The compression data as well as the inflections of the dehydration boundary indicate, however, two discrete structural changes of water. Data comparison with that model suggests that the anomaly boundary at lower pressure corresponds to a volume fraction [V(HDW)/(V(LDW)+V(HDW))] of 0.8, while the upper one approaches a volume fraction of 1.  相似文献   

15.
We report simulations of adamantane by carefully combining ab initio and empirical approaches to enable simulations with internal degrees of freedom on crystalline adamantane up to a pressure of 26 GPa. Two sets of simulations, assuming the adamantane molecule as a rigid (RB) and flexible body (FB), have been carried out as a function of pressure up to 26 GPa to understand changes in the crystal structure as well as molecular structure. The flexible body simulations have been performed by including 6 lowest frequency internal modes (obtained from DFT calculations performed with Gaussian98) out of the total of 72. The calculated variation in c/a and V/V(0) from the RB and FB calculations as a function of pressure have been compared with the experimental curve. Other relevant thermodynamic and structural properties reported are the radial distribution functions, deviation in the position of a given type of atom with respect to its position at standard pressure, delta(s), cell parameters, volume, and energy. With an increase in pressure, three additional peaks are seen to develop gradually at three different pressures in the center of mass (com)-com radial distribution function (rdf). We attribute these changes to structural transformations (probably second-order phase transitions) which is consistent with the three phase transitions reported by Vijayakumar et al. for adamantane in the pressure range of 1 atm-15 GPa. Our simulations also show that these additional peaks in the rdf's are associated with the differences between opposite and parallel spin neighbors of Greig and Pawley as well as the crystallographic directional dependence of intermolecular distances in the first three shells of the neighbors. Also, the structural quantities from the RB calculation show considerable deviation from the FB calculation for pressures greater than 5 GPa, which suggests that the rigid body assumption for molecules may not be valid above this pressure.  相似文献   

16.
We present Raman spectroscopy experiments in dimethylacetylene (DMA) using a sapphire anvil cell up to 4 GPa at room temperature. DMA presents phase transitions at 0.2 GPa (liquid to phase I) and 0.9 GPa, which have been characterized by changes in the Raman spectrum of the sample. At pressures above 2.6 GPa several bands split into two components, suggesting an additional phase transition. The Raman spectrum of the sample above 2.6 GPa is identical to that found for the monoclinic phase II (C2/m) at low temperatures, except for an additional splitting of the band assigned to the fourfold degenerated asymmetric methyl stretch. The global analysis of the Raman spectra suggests that the observed splitting is due to the loss of degeneracy of the methyl groups of the DMA molecule in phase II. According to the above interpretation, crystal phase II of DMA extends from 0.9 GPa to pressures close to 4 GPa. Between 0.9 and 2.6 GPa, the methyl groups of the DMA molecules rotate almost freely, but the rotation is hindered on further compression.  相似文献   

17.
In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P4(3)2(1)2) is preferred in a narrow pressure range of 4-7 GPa. Phase III (P2(1)/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P2(1) at 0 GPa; P2(1)/c at high pressure) comes into play, slightly more stable than phase III in the range of 50-80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P2(1)/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C(6)H(6))(2) dimers are predicted.  相似文献   

18.
The acoustic properties of three polymer elastomers, a cross-linked poly(dimethylsiloxane) (Sylgard 184), a cross-linked terpolymer poly(ethylene-vinyl acetate-vinyl alcohol), and a segmented thermoplastic poly(ester urethane) copolymer (Estane 5703), have been measured from ambient pressure to approximately 12 GPa by using Brillouin scattering in high-pressure diamond anvil cells. The Brillouin-scattering technique is a powerful tool for aiding in the determination of equations of state for a variety of materials, but to date has not been applied to polymers at pressures exceeding a few kilobars. For the three elastomers, both transverse and longitudinal acoustic modes were observed, though the transverse modes were observed only at elevated pressures (>0.7 GPa) in all cases. From the Brillouin frequency shifts, longitudinal and transverse sound speeds were calculated, as were the C(11) and C(12) elastic constants, bulk, shear, and Young's moduli, and Poisson's ratios, and their respective pressure dependencies. P-V isotherms were then constructed, and fit to several empirical/semiempirical equations of state to extract the isothermal bulk modulus and its pressure derivative for each material. Finally, the lack of shear waves observed for any polymer at ambient pressure, and the pressure dependency of their appearance is discussed with regard to instrumental and material considerations.  相似文献   

19.
We report an unexpectedly high chemical stability of molecular solid 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) under static high pressures. In contrast to the high-pressure behavior of the majority of molecular solids, TATB remains both chemically stable and an insulator to 150 GPa--well above the predicted metallization pressure of 120 GPa. Single crystal studies have shown that TATB exhibits pressure-induced Raman changes associated with two subtle structural phase transitions at 28 and 56 GPa. These phase transitions are accompanied by remarkable color changes, from yellow to orange and to dark red with increasing pressure. We suggest that the high-stability of TATB arises as a result of its hydrogen-bonded aromatic two-dimensional (2D) layered structure and highly repulsive interlayer interaction, hindering the formation of 3D networks or metallic states.  相似文献   

20.
Liu CL  Sui YM  Ren WB  Ma BH  Li Y  Su NN  Wang QL  Li YQ  Zhang JK  Han YH  Ma YZ  Gao CX 《Inorganic chemistry》2012,51(13):7001-7003
An accurate in situ electrical resistivity measurement of cuprous oxide cubes has been conducted in a diamond anvil cell at room temperature with pressures up to 25 GPa. The abnormal electrical resistivity variation found at 0.7-2.2 GPa is attributed to the phase transformation from a cubic to a tetragonal structure. Three other discontinuous changes in the electrical resistivity are observed around 8.5, 10.3, and 21.6 GPa, corresponding to the phase transitions from tetragonal to pseudocubic to hexagonal to another hexagonal phase, respectively. The first-principles calculations illustrate that the electrical resistivity decrease of the tetragonal phase is not related to band-gap shrinkage but related to a higher quantity of electrons excited from strain-induced states increasing in band gap with increasing pressure. The results indicate that the Cu(2)O cubes begin to crush at about 15 GPa and completely transform into nanocrystalline at 25 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号