首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the infrared absorption spectrum of the methylthio (or thiomethoxy) radical, CH(3)S (X (2)E(3/2)), produced via photodissociation in situ of three precursors CH(3)SH, CH(3)SCH(3), and CH(3)SSCH(3) isolated in solid p-H(2). The common absorption features observed with similar intensity ratios in each experiment are assigned to CH(3)S. The wavenumbers of these features agree satisfactorily with those predicted with a spin-vibronic Hamiltonian accounting for the anharmonic effects and the Jahn-Teller effects to the quartic term [A. V. Marenich and J. E. Boggs, J. Chem. Theory Comput. 1, 1162 (2005)]. In addition to an absorption line at 724.2?cm(-1), corresponding to a transition of 3(1) previously determined to be 727?cm(-1) from fluorescence spectra of gaseous CH(3)S, we identified fundamental transitions 6(1)(a(1)) at 771.1, 6(1)(e) at 1056.6, 5(1)(a(1)) at 1400.0, 4(1)(a(1)) at 2898.4?cm(-1), and several combination and overtone transitions. In contrast, photolysis of CH(3)SSCH(3) isolated in solid Ar produces mainly H(2)CS, CH(3)SH, and CS(2), but no CH(3)S. These results demonstrate the feasibility of using photolysis in situ of precursors isolated in solid p-H(2) to produce free radicals by taking advantage of the diminished cage effect of the matrix.  相似文献   

2.
A step-scan Fourier-transform spectrometer coupled with a 6.4 m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of the reaction intermediate CH3SO2 radical, produced upon irradiation of a flowing gaseous mixture of CH3I and SO2 in CO2 at 248 nm. Two transient bands with origins at 1280 and 1076 cm(-1) were observed and are assigned to the SO2-antisymmetric and SO2-symmetric stretching modes of CH3SO2, respectively. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational, and rotational parameters of CH3SO2 and CH3OSO. Based on predicted rotational parameters, the simulated absorption band of the SO2-antisymmetric stretching mode that is dominated by the b-type rotational structure agrees satisfactorily with experimental results. In addition, a band near 1159 cm(-1) observed at a later period is tentatively attributed to CH3SO2I. The reaction kinetics of CH3 + SO2 --> CH3SO2 and CH3SO2 + I --> CH3SO2I based on the rise and decay of absorption bands of CH3SO2 and CH3SO2I agree satisfactorily with previous reports.  相似文献   

3.
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.  相似文献   

4.
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to monitor time-resolved infrared absorption of transient species produced upon irradiation at 248 nm of a flowing mixture of CH(3)SSCH(3) and O(2) at 260 K. Two transient bands observed with origins at 1397±1 and 1110±3 cm(-1) are tentatively assigned to the antisymmetric CH(3)-deformation and O-O stretching modes of syn-CH(3)SOO, respectively; the observed band contour indicates that the less stable anti-CH(3)SOO conformer likely contributes to these absorption bands. A band with an origin at 1071±1 cm(-1), observed at a slightly later period, is assigned to the S=O stretching mode of CH(3)SO, likely produced via secondary reactions of CH(3)SOO. These bands fit satisfactorily with vibrational wavenumbers and rotational contours simulated based on rotational parameters of syn-CH(3)SOO, anti-CH(3)SOO, and CH(3)SO predicted with density-functional theories B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ. Two additional bands near 1170 and 1120 cm(-1) observed at a later period are tentatively assigned to CH(3)S(O)OSCH(3) and CH(3)S(O)S(O)CH(3), respectively; both species are likely produced from self-reaction of CH(3)SOO. The production of SO(2) via secondary reactions was also observed and possible reaction mechanism is discussed.  相似文献   

5.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

6.
The infrared and Raman spectra were obtained for liquid CF3SO2CH3, as well as the infrared spectrum of the gaseous substance. The molecular geometry was optimized by means of the Hartree-Fock (HF), second order electron correlation (MP2) and density functional theory (DFT) procedures of quantum chemistry, resulting in a structure with Cs symmetry. The wavenumbers corresponding to the normal modes of vibration were calculated using the DFT (B3LYP/6-31G**) approximation and their agreement with the measured values improved after scaling of the associated force field. An assignment of bands is proposed on the basis of such calculations and the comparison with related molecules.  相似文献   

7.
We employed pulsed deposition of p-H2 onto a cold target to form a matrix sample suitable for measurements of infrared absorption. Unlike the method of rapid vapor deposition at approximately 2.5 K, developed by Fajardo et al., this method can be performed at a temperature as high as 5.5 K, achievable with a closed-cycle refrigerator; pumping on liquid helium in a cryostat is eliminated. Compared with the enclosed-cell method developed by Oka, Shida, Momose, and co-workers, this method is more versatile in sample preparation, especially for samples at a greater concentration or with high reactivity. Two experiments were tested: the pulse-deposited sample of CH4/p-H2 yields an infrared absorption spectrum nearly identical to that recorded with rapid vapor deposition, and a sample of vinyl chloride (C2H3Cl) in solid p-H2 irradiated with laser emission at 193 nm yields C2H5, in contrast to formation of HCl, C2H2, and a complex of HClC2H2 observed upon photolysis of C2H3Cl in an Ar matrix. These experiments are also compared with those with n-H2 or Ne as the matrix host.  相似文献   

8.
CH(3)OO radicals were produced upon irradiation of a flowing mixture of CH(3)I and O(2) with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved IR absorption spectra of reaction intermediates. Transient absorption bands with origins at 3033, 2954, 1453, 1408, 1183, 1117, 3020, and 1441 cm(-1) are assigned to nu(1)-nu(6), nu(9), and nu(10) modes of CH(3)OO, respectively, close to wavenumbers reported for CH(3)OO isolated in solid Ar. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predicted the geometry and the vibrational wavenumbers of CH(3)OO; the vibrational wavenumbers and relative IR intensities of CH(3)OO agree satisfactorily with these observed features. The rotational contours of IR spectra of CH(3)OO, simulated based on ratios of predicted rotational parameters for the upper and lower states and on experimental rotational parameters of the ground state, agree satisfactorily with experimental results; the mixing ratios of a-, b-, and c-types of rotational structures were evaluated based on the direction of dipole derivatives predicted quantum chemically. A feature at 995 cm(-1), ascribed to CH(3)OOI from a secondary reaction of CH(3)OO with I, was also observed.  相似文献   

9.
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1).  相似文献   

10.
11.
Ethyl methanesulfonate, CH3SO2OCH2CH3, is well-known as an alkylating agent in mutagenic and carcinogenic processes. Its electronic structure and that of the methanesulfonate anion (CH3SO3-) were determined using optimization methods based on density functional theory and Moller-Plesset second-order perturbation theory. For CH3SO2OCH2CH3, two conformations with symmetries C(s) and C1 are obtained, the former being more stable than the latter. Natural bond orbital (NBO) calculations show the C(s) conformation provides a more favorable geometry of the lone pairs of the oxygen atom linking the ethyl group. The NBO technique also reveals the characteristics of the methanesulfonate anion as a leaving group due to the rearrangement of the excess electronic charge after alkylation. Furthermore, the infrared spectra of CH3SO2OCH2CH3 are reported for the liquid and solid states as well as the Raman spectrum of the liquid. Comparison to experiment of the conformationally averaged IR spectrum of C(s) and C1 provides evidence of the predicted conformations in the solid IR spectrum. These experimental data along with the calculated theoretical force constants are used to define a scaled quantum mechanical force field for the target molecule, which allowed the measured frequencies to be reproduced with a final root-mean-square deviation of 9 cm(-1) and, thus, a reliable assignment of the vibrational spectrum.  相似文献   

12.
The recently developed I-atom atomic resonance absorption spectrometric (ARAS) technique has been used to study the thermal decomposition kinetics of CH3I over the temperature range, 1052–1820 K. Measured rate constants for CH3I(+Kr)→CH3+I(+Kr) between 1052 and 1616 K are best expressed by k(±36%)=4.36×10−9 exp(−19858 K/T) cm3 molecule−1 s−1. Two unimolecular theoretical approaches were used to rationalize the data. The more extensive method, RRKM analysis, indicates that the dissociation rates are effectively second-order, i.e., the magnitude is 61–82% of the low-pressure-limit rate constants over 1052–1616 K and 102–828 torr. With the known E0=ΔH00=55.5 kcal mole −1, the optimized RRKM fit to the ARAS data requires (ΔE)down=590 cm−1. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 535–543, 1997.  相似文献   

13.
Mixtures of Cl2, CH4, and O2 were flash photolyzed at room temperature and pressures of ∽60–760 Torr to produce CH3O2. The CH3O2 radicals decay by the second-order process with k6 = (3.7 ± 0.3) × 10?13 cm3/sec in good agreement with other studies. This value ignores any removal by secondary radicals produced as a result of reaction (6), and therefore the true value might be as much as 30% lower. The value is independent of total pressure or the presence of H2O vapor. With SO2 also present, the CH3O2 decay becomes pseudo first order at sufficiently high SO2 pressure which indicates the reaction The value of (8.2 ± 0.5) × 10?15 cm3/sec at about 1 atm total pressure (mostly CH4) was found for CH3O2 removal by SO2, in good agreement with another recent measurement. This value can be equated with k1, unless the products rapidly remove another CH3O2 radical, in which case k1 would be a factor of 2 smaller.  相似文献   

14.
15.
The tin-containing sulfide Me3Sn(CH2)3-S-C6H5CH3-4 obtained by photoaddition of 4-toluene- thiol to allyltrimethyltin was oxidized with hydrogen peroxide to synthesize the tin-containing sulfone Me3Sn(CH2)3-SO2-C6H4CH3-4, the tin and sulfur atoms in which are separated by a trimethylene bribge. Treatment of the sulfone with butyllithium gave a first tin-containing lithium salt having a red-brown color. The exchange reaction of this salt with methyl iodide resulted in formation of two new isomeric tin-containing sulfones Me3SnCH2CH2CH(CH3)-SO2-C6H4CH3 and Me3Sn(CH2)3-SO2-C6H4CH2CH3 identified by 1HNMR spectroscopy. The latter result implies that the tin-containing sulfone is lithiated both by the methylene group adjacent to the sulfonyl group and by the toluene methyl group.  相似文献   

16.
FTIR and single crystal Raman spectra of (CH3)2NH2Al(SO4)2 x 6H2O have been recorded at 300 and 90 K and analysed. The shifting of nu1 mode to higher wavenumber and its appearance in Bg species contributing to the alpha(xz) and alpha(yz) polarizability tensor components indicate the distortion of SO4 tetrahedra. The presence of nu1 and nu2 modes in the IR spectrum and the lifting of degeneracies of nu2, nu3, and nu4 modes are attributed to the lowering of the symmetry of the SO4(2-) ion. Coincidence of the IR and Raman bands for different modes suggest that DMA+ ion is orientationally disordered. One of the H atoms of the NH2 group of the DMA+ ion forms moderate hydrogen bonds with the SO4(2-) anion. Al(H2O)6(3+) ion is also distorted in the crystal. The shifting of the stretching modes to lower wavenumbers and the bending mode to higher wavenumber suggest that H2O molecules form strong hydrogen bonds with SO4(2-) anion. The intensity enhancement and the narrowing of nu1SO4, deltaC2N and Al(H2O)6(3+) modes at 90 K confirm the settling down of the protons in the hydrogen bonds formed with H2O molecules and NH2 groups. This may be one of the reasons for the phase transition observed in the crystal.  相似文献   

17.
Thermolysis of highly diluted (CH2Se)3 or (CD2Se)3 in a flow of argon with subsequent quenching of the products in an matrix at 15 K yields monomeric CH2Se and CD2Se, respectively. Six fundamental vibrations upsilon1 = 2972.5, upsilon2 = 1413.3, upsilon3 = 854.2, upsilon4 = 916.4, upsilon 5 = 3052.9, and upsilon 6 = 913.2 cm(-1) and two combination bands have been observed for CH2Se as well as three fundamentals of CD2Se. The vibrational wavenumbers are compared with those of CH2O and CH2S. Matrix isolated selenoformaldehyde decomposes slowly by UV photolysis to yield the CSe molecule.  相似文献   

18.
19.
The absolute Raman intensities of methyl iodide and deuterated derivatives have been measured in the gas phase, with an experimental accuracy of ten percent. We report the frecuency independent scattering coefficients and depolarization ratios, as well as the Raman tensor invariants, squared mean polarizability and anisotropy, derived from them.  相似文献   

20.
The rate of the reaction CH2I2 + HI ? CH3I + I2 has been followed spectrophotometrically from 201.0 to 311.2°. The rate constant for the reaction fits the equation, log (k1/M?1 sec?1) = 11.45 ± 0.18 - (15.11 ± 0.44)/θ. This value, combined with the assumption that E2 = 0 ± 1 kcal/mole, leads to ΔH (CH2I, g) = 55.0 ± 1.6 kcal/mole and DH (H? CH2I) = 103.8 ± 1.6 kcal/mole. The kinetics of the disproportionation, 2 CH3I ? CH4 + CH2I2 were studied at 331° and are compatible with the above values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号