首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ab initio study has been carried out to determine the structures, relative stabilities, and spin-spin coupling constants of a set of 17 methyl-substituted 1,3-diborata-2,4-diphosphoniocyclobutanes B(2)P(2)(CH(3))(n)H(8-n), for n = 0, 1, 2, 4, with four-member B-P-B-P rings. The B-P-B-P rings are puckered in a butterfly conformation, in agreement with experimental data for related molecules. Isomers with the CH(3) group bonded to P are more stable than those with CH(3) bonded to B. If there is only one methyl group or if two methyl groups are bonded to two different P or B atoms, isomers with equatorial bonds are more stable than those with axial bonds. However, when two methyl groups are present, the gem isomers are the most stable for molecules B(2)P(2)(CH(3))(2)H(6) with P-C and B-C bonds, respectively. Transition structures present barriers to the interconversion of two equilibrium structures or to the interchange of axial and equatorial positions in the same isomer. These barriers are very low for the isomer with two methyl groups bonded to B in axial positions for the isomer with four axial bonds and for the isomer with geminal B-C bonds at both B atoms. Coupling constants (1)J(B-P), (1)J(P-C), (1)J(B-C), (2)J(P-P), and (3)J(P-C) are capable of providing structural information. They are sensitive to the number of methyl groups present and can discriminate between axial, equatorial, and geminal bonds, although not all do this to the same extent. The one-bond coupling constants (1)J(B-P), (1)J(P-C), and (1)J(B-C) are similar in equilibrium and transition structures, but (3)J(P-C) and (2)J(P-P) are not. These coupling constants and those of the corresponding fluoro-derivatives of the 1,3-diborata-2,4-diphosphoniocyclobutanes demonstrate the great sensitivity of phosphorus coupling to structural and electronic effects.  相似文献   

2.
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to determine the structures and binding energies of homodimers (PHFX)(2) for X = F, Cl, CN, CH(3), and NC. Geometric isomers of these complexes with C(i) symmetry exist, which are differentiated in terms of the nature of the atoms (F-P···P-F, H-P···P-H, or A-P···P-A, with A being the atom of X directly bonded to P), which approach a nearly linear alignment. Of these, isomers having F-P···P-F linear are the most stable. Binding energies, intermolecular distances, and EOM-CCSD spin-spin coupling constants are sensitive to both the nature of X and the atoms that assume the linear alignment.  相似文献   

3.
Ab initio MP2/aug'-cc-pVTZ calculations have been performed to determine the structures and binding energies of 22 open and 3 cyclic complexes formed from the sp2 [H(2)C=PH and HP=PH (cis and trans)] and sp3 [PH2(CH3) and PH3] hybridized phosphorus bases and their corresponding protonated ions. EOM-CCSD calculations have been carried out to obtain (31)P-(31)P and (31)P-(1)H coupling constants across P-H+-P hydrogen bonds. Two equilibrium structures with essentially linear hydrogen bonds have been found along the proton-transfer coordinate, except for complexes with P(CH3)H3+ as the proton donor to the sp2 bases. Although the isomer having the conjugate acid of the stronger base as the proton donor lies lower on the potential energy surface, it has a smaller binding energy relative to the corresponding isolated monomers than the isomer with the conjugate acid of the weaker base as the donor. The hydrogen bond of the latter has increased proton-shared character. All of the complexes are stabilized by traditional hydrogen bonds, as indicated by positive values of the reduced coupling constants (2h)K(P-P) and (1)K(P-H), and negative values of (1h)K(H-P). (2h)J(P-P) correlates with the P-P distance, a correlation determined primarily by the nature of the proton donor. For open complexes, (1)J(P-H) always increases relative to the isolated monomer, while (1h)J(H-P) is relatively small and negative. (2h)J(P-P) values are quite large in open complexes, but are much smaller in cyclic complexes in which the P-H+-P hydrogen bonds are nonlinear. Thus, experimental measurements of (2h)J(P-P) should be able to differentiate between open and cyclic complexes.  相似文献   

4.
Sulfur-Phosphorus Heterocycles RP(S)Sn, Synthesis, Structure, and Properties Sulfur-phosphorus heterocycles of the composition RP(S)Sn (R = Me, t-Bu; n = 7–5) 1a, b–3a, b have been synthesized in ring-closing reactions between the silyl or stannyl esters of trithiophosphonic acids RP(S)(SEMe3)2 (E = Si, Sn) and chlorosulfanes SxCl2 (x = 5–3). The heterocycles are fairly stable in crystalline state, in solution disproportionation to ring compounds with larger and smaller number of S-atoms, respectively, as well as oligomerization is observed. According to NMR spectroscopic investigations the S? P heterocycles exhibit the following structures 1. MeP(S)S7 ( 1a ), eight-membered ring showing two crown conformations that differ in the orientation (axial, equatorial) of the Me-group; t-BuP(S)S7 ( 1b ), eight-membered ring with crown conformation (t-Bu = equatorial). 2. RP(S)S6 ( 2a, b ), seven-membered rings with twist-chair conformation. 3. RP(S)S5, six-membered rings, R = Me ( 3a ) chair conformation (Me = axial), R = t-Bu ( 3b ) chair conformation (t-Bu = equatorial) and twist-boat conformation. In crystalline state 1a only exists in the crown conformation with axial orientation of the Me-group. In solution a fast conformational interconversion between the two isomers of 1a and of 3b has been detected by dynamic NMR measurements. Furthermore t-BuP(S)S5 ( 3b ) is in a temperature and concentration dependent equilibrium with its dimer and probably also with oligomeric forms.  相似文献   

5.
Relaxed‐residue energy maps based on the MM3 force field were computed for the three C‐linked (1‐1) d‐glucosyl disaccharides, C‐trehaloses: the axial–axial linked α,α‐trehalose, the axial–equatorial α,β‐trehalose and the equatorial–equatorial linked β,β‐trehalose. Optimized structures were calculated on a 20°‐grid spacing of the torsional angles about the C‐glycosidic bonds. Boltzman weighted 3J coupling constants were calculated and compared to the experimental values; they are satisfactory. The general shape of the energy maps indicates that α,α‐trehalose is a quite rigid molecule adopting only one conformation around the C‐glycosidic linkage, whereas the other two isomers are rather flexible. Compared to the corresponding O‐disaccharides α,β‐ and β,β‐trehaloses exhibit a larger number of low energy conformers and a larger area of the map energy < 8 kcal/mol. The preferred conformations of the axial C‐glycosidic bond are in agreement with the exo‐anomeric effect. Equatorial C‐ glycosidic bonds are rather flexible, influenced by the polarity of the milieu and the formation of interresidue hydrogen bonds.  相似文献   

6.
Vicinal thallium–hydrogen coupling constants are used to discuss conformations in dicyclohexylthallium chloride, bis(4-methylcyclohexyl)thallium chloride and bis(4-tert-butylcyclohexyl)thallium chloride. Thallium does not have a very strong preference for equatorial positions in dicyclohexylthallium chloride, whereas bis(4-alkylcyclohexyl)thallium chlorides exist largely in one conformation. Bis(4-methylcyclohexyl)thallium chloride exists in three isomeric forms; the major product appears to be the cis-isomer (equatorial methyl, axial thallium), with the other two isomers probably containing thallium trans to the methyl group (axial thallium being preferred). The preference for the cis-isomer (equatorial tert-butyl, axial thallium) of bis(4-tert-butylcyclohexyl)thallium chloride is such that other isomers are not obtained.  相似文献   

7.
The equilibrium geometries, energies, harmonic vibrational frequencies, and nucleus independent chemical shifts (NICSs) of the ground state of P5(-) (D(5h)) anion, the [Ti (eta(5)-P5)]- fragment (C(5v)), and the sandwich complex [Ti(eta(5)-P5)2]2- (D(5h) and D(5d)) are calculated by the three-parameter fit of the exchange-correlation potential suggested by Becke in conjunction with the LYP exchange potential (B3LYP) with basis sets 6-311+G(2d) (for P) and 6-311+G(2df) (for Ti). In each of the three molecules, the P-P and Ti-P bond distances are perfectly equal: five P atoms in block P5(-) lie in the same plane; the P-P bond distance increases and the Ti-P bond distance decreases with the order P5(-), [Ti(eta(5)-P5)2]2-, and [Ti (eta(5)-P5)]-. The binding energy analysis, which is carried out according to the energy change of hypothetic reactions of the three species, predicts that the three species are all very stable, and [Ti (eta(5)-P5)]- (C(5v)), more stable than P5(-) and [Ti(eta(5)-P5)2]2- synthesized in the experiment, could be synthesized. NICS values, computed for the anion and moiety of the three species with GIAO-B3LYP, reveal that the three species all have a larger aromaticity, and NICS (0) of moiety, NICS (1) of moiety, and minimum NICS of the inner side of ring P5 plane in magnitude increase with the order P5(-), [Ti(eta(5)-P5)2]2-, and [Ti (eta(5)-P5)]-. By analysis of the binding energetic and the molecular orbital (MO) and qualitative MO correlation diagram, and the dissection of total NICS, dissected as NICS contributions of various bonds, it is the main reason for P5(-) (D(5h)) having the larger aromaticity that the P-P sigma bonds, and pi bonds have the larger diatropic ring currents in which NICS contribution are negative, especially the P-P sigma bond. However, in [Ti (eta(5)-P5)]- (C(5v)) and [Ti(eta(5)-P5)2]2- (D(5h), and D(5d)), the reason is the larger and more negative diatropic ring currents in which the NICS contributions of P-P pi bonds and P5-Ti bonds including pi, delta, and sigma bonds, especially P5-Ti bonds, are much more negative and canceled the NICS contributions of P and Ti core and lone pair electrons.  相似文献   

8.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

9.
硼碳团簇BnC2 (n=1~6)的理论研究   总被引:1,自引:0,他引:1  
王若曦  张冬菊  朱荣秀  刘成卜 《化学学报》2007,65(19):2092-2096
应用密度泛函理论在B3LYP/6-311+G(d)水平上研究了硼碳团簇BnC2 (n=1~6)的几何结构、生长机制和相对稳定性. 计算结果表明, 对于n=2~6的簇, 平面多环状构型为最稳定的结构, 其中C原子分布于环的顶点、有尽可能多的三配位硼原子和尽可能多的B—C键. 碳原子作为杂原子倾向掺杂于团簇的顶点位置, 它的掺杂不改变硼团簇的主体结构. 与平面多环状结构相比, 随着簇尺寸的增大, 三维结构和线性链结构更不稳定. 在低能线性结构中, C原子位于链两侧的第二个位置. 计算的碎片分裂能、递增键能以及HOMO-LUMO能隙表明, B4C2为幻数簇.  相似文献   

10.
Ab initio equation-of-motion coupled cluster (EOM-CCSD) one-bond spin-spin coupling constants (1)J(B-N), (1)J(B-H), and (1)J(B-F) have been evaluated for complexes X:BH(n)F(3-n) with X = N(2), NCH, NCLi, H(2)CNH, NF(3), and NH(3), for n = 0-3. These complexes can be classified as either covalent or van der Waals complexes, on the basis of their binding energies and B-N distances. (1)J(B-N) for covalent complexes varies significantly from -19 to +9 Hz, whereas (1)J(B-N) is less than 2 Hz for van der Waals complexes. An absolute value of (1)J(B-N) of 3 Hz or greater indicates that the complex is covalently bonded, but a small value of this coupling constant does not necessarily mean that it is a van der Waals complex, in view of the variation among these complexes found for (1)J(B-N) as a function of the B-N distance. Deformation of the boron acid upon complex formation and electron donation by the nitrogen base has opposing effects on both (1)J(B-H) and (1)J(B-F). These effects are relatively small in van der Waals complexes. In covalent complexes, electron donation has the dominant effect on (1)J(B-H), and on (1)J(B-F) in complexes with BH(2)F and BHF(2), but acid deformation has the dominant effect on (1)J(B-F) in complexes with BF(3). Values of both (1)J(B-H) and (1)J(B-F) reflect the van der Waals or covalent nature of the B-N bond.  相似文献   

11.
C_(70)PH可能异构体的结构与稳定性的理论研究   总被引:1,自引:0,他引:1  
分别用半经验的AM1, PM3及MNDO方法研究了富勒烯衍生物C_(70)PH的12种可能异构体的结构和稳定性。计算结果表明: -PH基团加成在4种6-6键上的稳定构型中,非赤道带6-6键加成的三个异构体为闭环结构,赤道带6-6键加成的一个异构体为开环结构;-PH基团加成在4种6-5键上均可产生开环和闭环2种稳定构型。加成在6-5双键的异构体其闭环构型更稳定,加成在6-5单键的异构体其开环构型更稳定。闭环异构体中-PH基团加成在碳球极处6-6键上的构型1,2最稳定,开环异构体中-PH基团加成在赤道带6-6键上的构型8最稳定。  相似文献   

12.
Structures, energetics, and vibrational spectra are investigated for small pure (TiO(2))(n), (SiO(2))(n), and mixed Ti(m)Si(n-m)O(2n) [n = 2-5, m = 1 to (n - 1)] oxide clusters by density functional theory (DFT). The BP86/ATZP level of theory is employed to obtain constitutional isomers of the oxide clusters. In accordance with previous studies, our calculations show three-dimensional compact structures are preferred for pure (TiO(2))(n) with oxo-stabilized higher hexavalent states, and linear chain structures are favored for pure (SiO(2))(n) with tetravalent states. However, the herein theoretically first reported mixed Ti(m)Si(n-m)O(2n) oxide clusters prefer either three-dimensional compact or linear chain structures depending upon the stoichiometry of the compound. Vibrational analysis of the important modes of some highly stable structures is provided. Coupled-cluster single and double excitation (with triples) [CCSD(T)] computed energy gaps for the TiO(2) dimers compare well with results from previous study. Excitation energies are computed by use of time-dependent (TD) DFT and equation-of-motion coupled-cluster calculations with singles and doubles (EOM-CCSD) for the most stable isomers.  相似文献   

13.
The reactions of OsO4 with excess of HSC6F5 and P(C6H4X-4)3 in ethanol afford the five-coordinate compounds [Os(SC6F5)4(P(C6H4X-4)3)] where X = OCH3 1a and 1b, CH3 2a and 2b, F 3a and 3b, Cl 4a and 4b or CF3 5a and 5b. Single crystal X-ray diffraction studies of 1 to 5 exhibit a common pattern with an osmium center in a trigonal-bipyramidal coordination arrangement. The axial positions are occupied by mutually trans thiolate and phosphane ligands, while the remaining three equatorial positions are occupied by three thiolate ligands. The three pentafluorophenyl rings of the equatorial ligands are directed upwards, away from the axial phosphane ligand in the arrangement “3-up” (isomers a). On the other hand, 31P{1H} and 19F NMR studies at room temperature reveal the presence of two isomers in solution: The “3-up” isomer (a) with the three C6F5-rings of the equatorial ligands directed towards the axial thiolate ligand, and the “2-up, 1-down” isomer (b) with two C6F5-rings of the equatorial ligands directed towards the axial thiolate and the C6F5-ring of the third equatorial ligand directed towards the axial phosphane. Bidimensional 19F–19F NMR studies encompass the two sub-spectra for the isomers a (“3-up”) and b (“2-up, 1-down”). Variable temperature 19F NMR experiments showed that these isomers are fluxional. Thus, the 19F NMR sub-spectra for the “2-up, 1-down” isomers (b) at room temperature indicate that the two S-C6F5 ligands in the 2-up equatorial positions have restricted rotation about their C–S bonds, but this rotation becomes free as the temperature increases. Room temperature 19F NMR spectra of 3 and 5 also indicate restricted rotation around the Os–P bonds in the “2-up, 1-down” isomers (b). In addition, as the temperature increases, the 19F NMR spectra tend to be consistent with an increased rate of the isomeric exchange. Variable temperature 31P{1H} NMR studies also confirm that, as the temperature is increased, the a and b isomeric exchange becomes fast on the NMR time scale.  相似文献   

14.
The structures of a large number of isomers of the sulfur oxides S(n)O with n = 4-9 have been calculated at the G3X(MP2) level of theory. In most cases, homocyclic molecules with exocyclic oxygen atoms in an axial position are the global minimum structures. Perfect agreement is obtained with experimentally determined structures of S(7)O and S(8)O. The most stable S(4)O isomer as well as some less stable isomers of S(5)O and S(6)O are characterized by a strong pi*-pi* interaction between S==O and S==S groups, which results in relatively long S--S bonds with internuclear distances of 244-262 pm. Heterocyclic isomers are less stable than the global minimum structures, and this energy difference approximately increases with the ring size: 17 (S(4)O), 40 (S(5)O), 32 (S(6)O), 28 (S(7)O), 45 (S(8)O), and 54 kJ mol(-1) (S(9)O). Owing to a favorable pi*-pi* interaction, preference for an axial (or endo) conformation is calculated for the global energy minima of S(7)O, S(8)O, and S(9)O. Vapor-phase decomposition of S(n)O molecules to SO(2) and S(8) is strongly exothermic, whereas the formation of S(2)O and S(8) is exothermic if n<7, but slightly endothermic for S(7)O, S(8)O, and S(9)O. The calculated vibrational spectra of the most stable isomers of S(6)O, S(7)O, and S(8)O are in excellent agreement with the observed data.  相似文献   

15.
Density functional theory studies on a series of Fe2(CO)6(PX)2 derivatives show the tetrahedrane to be the most stable for the alkyl (X = Me, tBu), P-H (X = H), and chloro (X = Cl) derivatives. However, butterfly diradical and planar rhombus structures are found to be more stable than tetrahedranes for the amino (X = NH2, NMe2, and NiPr2) and aryloxy (R = 2,6-tBu2-4-Me-C6H2O) derivatives. For the chloro (X = Cl) and methoxy (X = OMe) derivatives energetically accessible bishomotetrahedrane Fe2(CO)6P2(mu-X)2 isomers are observed in which the X substituents on the phosphorus atoms interact with the iron atom to form two direct Fe-X bonds at the expense of two of the four Fe-P bonds. In addition, the global minimum for the hydroxy (X = OH) derivative is an unusual FeP-butterfly structure with a central Fe-P bond as well as two external Fe-P bonds, one external P-P bond, and one external Fe=Fe double bond. Comparison of calculated with experimental nu(CO) frequencies shows that low-temperature Nujol matrix photolysis of (iPr2NP)2COFe2(CO)6 leads to a planar rhombus rather than a tetrahedrane isomer of Fe2(CO)6(PNiPr2)2.  相似文献   

16.
The main C(1) isomer of C(70)F(38) is shown by single-crystal X-ray analysis to contain four planar aromatic hexagons and four isolated C=C bonds, has two fluorines on the equator, and is related to C(2) C(70)F(38) by means of three 1,3-fluorine shifts. The C(1) and C(2) isomers thus parallel the T and C(3)/C(1) isomers of C(60)F(36) in containing three and four aromatic rings, respectively, and in the fluorine shift relationship.  相似文献   

17.
Propionitrile complexes fac-[M(CO)(3)(P-P)(NCEt)] (M = Mo (3), W (4); P-P = Ph(2)PCH(2)PPh(2) (a), Ph(2)PC(2)H(4)PPh(2) (b), Ph(2)PC(3)H(6)PPh(2) (c), (S,S)-Ph(2)PCHMeCHMePPh(2) (d), Fe(C(5)H(4)PPh(2))(2) (e)) were synthesized from [M(CO)(3)(NCEt)(3)] and the corresponding diphosphine. Reactions of 3 and 4 with sulfur dioxide initially gave complexes fac-[M(CO)(3)(P-P)(eta(2)-SO(2))] (M = Mo (5), W (6)), which slowly isomerized to mer-[M(CO)(3)(P-P)(eta(1)-SO(2))] (M = Mo (7), W (8)). The structures of 7b and 8b were determined by X-ray crystallography. Both compounds are isostructural (monoclinic, space group P2(1)/n (No. 14)) with almost identical unit cell dimensions (7b, a = 14.511(5) A, b = 12.797(2) A, c = 16.476(6) A, beta = 115.92(2); 8b, a = 14.478(8) A, b = 12.794(3) A, c = 16.442(9) A, beta = 116.01(2)) and molecular geometries. Treatment of either fac-[M(CO)(3)(P-P)(eta(2)-SO(2))] or mer-[M(CO)(3)(P-P)(eta(1)-SO(2))] with diazomethane yielded the sulfene complexes mer-[M(CO)(3)(P-P)(eta(2)-CH(2)SO(2))] (M = Mo (9), W (10)). The structure of 10a was determined crystallographically: monoclinic, space group P2(1)/n (No. 14), a = 11.719(2) A, b = 17.392(4) A, c = 13.441(3) A, beta = 95.58(2). The tungsten atom resides in the center of a distorted pentagonal bipyramid. The sulfene ligand occupies two adjacent equatorial sites with the bond distances W-C, 2.322(13) A, W-S, 2.353(3) A, and S-C, 1.721(12) A. The latter equals the S-C single bond distance in thiirane S,S-dioxide, indicating a high degree of charge density transfer into the LUMO of the sulfene ligand.  相似文献   

18.
Some new phosphorus(III) derivatives Ar(2)PX (X = Br, Cl, F or H), ArPX(2) (X = Br or Cl), Ar(3)P and Ar(t)BuPCl, with the 2,5-bis(trifluoromethyl)phenyl (Ar) substituent on phosphorus, have been prepared, and characterised by (31)P and (19)F NMR solution-state spectroscopy. The complexing ability of Ar(2)PX, Ar(3)P and Ar(t)BuPCl towards the dimeric platinum(II) complexes [PtY(μ-Y)(PEt(3))](2) (Y = Cl or Br, the latter for X = Br only) has also been investigated. Single-crystal X-ray diffraction studies at low temperature have been carried out for Ar(3)P, Ar(2)PCl and the hydrolysis or oxidation products Ar(2)P(H)OH and Ar(2)P(O)OH. The structures of Ar(3)P and Ar(2)PCl are particularly interesting as in each compound the geometry around P is approximately octahedral. In Ar(3)P there are three short contacts to fluorine as well as the three bonded C atoms for both of the independent molecules in the unit cell. For Ar(2)PCl there are two short P-F contacts, and the octahedron is completed by a weak P-P interaction to a neighbouring molecule. In both instances the lone pair on the P(III) centre appears to be stereochemically inactive, and does not play a significant role in the structure.  相似文献   

19.
The 1JC--H coupling constants in conformationally constrained sulfoxides, bissulfoxides, sulfoxide-sulfones, and sulfilimines derived from 2-benzylidene-1,3-dithiane and 2-(2,2-dimethylpropylidene)-1,3-dithiolane were measured by means of HMQC and HSQC NMR experiments and the Perlin effects were calculated. The type and the relative configuration of S==X groups (X= O, NTos) in these compounds have a strong influence on the magnitude of coupling constants for axial and equatorial C--H bonds, respectively. Axial S==O bonds give rise to a stereoelectronic effect on antiperiplanar axial C--H bonds. The resultant weakening of the respective C--H bonds leads to a smaller coupling constant than for a respective equatorial C--H bond. Equatorial S==O groups have an influence on beta-C--H bonds through a homoanomeric effect. Here, the axial C--H bond is weakened and a smaller coupling constant is measured. Sulfilimine groups show similar effects to sulfoxide groups.  相似文献   

20.
3J(C,H) coupling constants via a sulfur atom in two series of compounds, both including a sulfide, a sulfoxide and a sulfone, were detected experimentally and calculated by quantum mechanical methods. In the first series (1-3) the coupling between a hydrogen, bonded to an sp3 carbon, and an sp2 carbon is treated; the second series (4-6) deals with the coupling between a hydrogen, bonded to an sp3 carbon, and an sp3 carbon. Different pulse sequences (broadband HMBC, SelJres, 1D HSQMBC, J-HMBC-2, selective J-resolved long-range experiment and IMPEACH-MBC) proved to be useful in determining the long-range 3J(C,H) coupling constants. However, the dynamic behaviour of two of the compounds (4 and 6) led to weighted averages of the two coupling constants expected (concerning equatorial and axial positions of the corresponding hydrogens). DFT calculations proved to be useful to calculate not only the 3J(C,H) coupling constants but also the different contributions of FC, PSO, DSO and SD terms; the calculation of the Fermi contact term (FC) was found to be sufficient for the correct estimation of 3J(C,H) coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号