共查询到20条相似文献,搜索用时 15 毫秒
1.
Cabaleiro-Lago EM Peña-Gallego A Rodríguez-Otero J 《The Journal of chemical physics》2008,128(19):194311
The characteristics of the interaction between phenol and acetonitrile, methyl fluoride and methyl chloride were studied. The most stable structures for clusters containing one or two CH3X molecules and one phenol moiety were located by means of ab initio and density functional theory calculations. Phenol-acetonitrile dimer presents two almost equally stable structures; one of them is a typical linearly hydrogen bonded minimum, whereas in the other one, a C-H...pi contact is established accompanied by a distorted O-H...N hydrogen bond. Although the latter minimum presents the larger interaction energy, deformation effects favor the formation of the linear hydrogen bonded one. In complexes with methyl fluoride and methyl chloride, this arrangement is the most stable structure and no linear hydrogen bonded structures were located. Our best estimates for the interaction energies amount to -27.8, -21.6, and -19.7 kJ/mol for clusters of phenol with acetonitrile, methyl fluoride, and methyl chloride, respectively. The main contribution to the stabilization of these clusters is of electrostatic nature, although in structures where a C-H...pi contact is present, the dispersion contribution is also significant. In clusters formed by phenol and two CH3X units, the most stable arrangement corresponds to a head to tail disposal with O-H...X, C-H...X, and C-H...pi contacts forming a cycle. Only for this type of arrangement, three body effects are non-negligible even though they constitute a minor effect. The results also indicate that interactions with methyl fluoride and methyl chloride are of similar intensity, although weaker than with acetonitrile. Significant frequency shifts are predicted for the O-H stretching, which increase when increasing the number of CH3X molecules. 相似文献
2.
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3 and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2 with B(CH3)3 and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones. 相似文献
3.
Řeřicha R. Stokr J. Jakoubková M. Svoboda P. Chvalovský V. 《Colloid and polymer science》1976,254(10):932-932
Ohne Zusammenfassung 相似文献
4.
Enrique M. Cabaleiro-Lago Jes��s Rodr��guez-Otero ��ngeles Pe?a-Gallego 《Theoretical chemistry accounts》2011,128(4-6):531-539
A computational study of dimers formed by aniline and one or two CH3X molecules, X being CN, Cl or F, was carried out to elucidate the main characteristics of the interacting systems. Two different structures were found for each of the dimers, depending on the relative location of the CH3X molecule with respect to the NH2 hydrogen atoms. The most stable complex is formed with acetonitrile, with a complexation energy amounting to ?27.0?kJ/mol. Methyl chloride and methyl fluoride form complexes with complexation energies amounting to ?18.1 and ?17.5?kJ/mol, respectively, though the structural arrangement is quite different for both structures. In most complexes, the leading contribution to the stabilization of the complex is dispersion, though the electrostatic contribution is almost as important. Three different minima were obtained for clusters containing two CH3X molecules depending on the side they occupy with respect to the phenyl ring. The complexation energies for these structures amount to ?58.5, ?38.6 and ?36.3?kJ/mol for acetonitrile, methyl chloride and methyl fluoride, respectively. 相似文献
5.
《Chemical physics letters》1999,291(3-4):239-247
Standard enthalpies of formation of ROX (R=H, CH3; X=F, Cl, Br) compounds were theoretically estimated using hydrogenation reactions as working chemical reactions. Energy differences were computed at four ab initio levels of calculation, using gaussian-2 (G2) theory (Level I), coupled-cluster theory with split-valence basis set (Level II), coupled-cluster theory with triple-zeta basis set (Level III), and Truhlar's basis-set limit method (Level IV). The recommended standard enthalpies of formation (at 298.15 K and 1.0 atm) are the unweighted averages of the results obtained at Levels I and IV from the different hydrogenation reactions, namely: FOH, −21.1±0.3; ClOH, −18.5±0.5; BrOH, −15.2±1.1; CH3OF, −19.1±2.1; CH3OCl, −13.2±2.3, and CH3OBr, −8.7±2.7 kcal mol−1. 相似文献
6.
Structures of protonated alane-Lewis base donor-acceptor complexes H2X2AlNHn(CH3)(3-n)+ (X = F, Cl, and Br; n = 0-3) as well as their neutral parents were investigated. All the monocations H2X2AlNHn(CH3)(3-n)+ are Al-H protonated involving hypercoordinated alane with a three-center two-electron bond and adopt the C(s) symmetry arrangement. The energetic results show that the protonated alane-Lewis complexes are more stable than the neutral ones. They also show that this stability decreases on descending in the corresponding periodic table column from fluorine to bromine atoms. The calculated protonation energies of HX2AlNHn(CH3)(3-n) to form H2X2AlNHn(CH3)(3-n)+ were found to be highly exothermic. The possible dissociation of the cations H2X2AlNHn(CH3)(3-n)+ into X2AlNHn(CH3)(3-n)+ and molecular H2 is calculated to be endothermic. 相似文献
7.
Bundhun A Abdallah HH Ramasami P Schaefer HF 《The journal of physical chemistry. A》2010,114(50):13198-13212
8.
The structures, energies, atomic chaiges and IR spectra of complexes (CH2)2O…XY (X, Y = H, F, Cl, Br, and I) have been examined by means of ab initio molecular orbital theory at the second-order level of Moller-Plesset perturbation correction. It is found that the hydrogen bond O…H-X is non-linear. The attraction between X and the H atoms in oxirane ring causes O…H-X bond bending. The hydrogen bond slighdy weakens the bond strength of C-O, and leads the bending and stretching mode of IR to shift to the red. The calculation results show that there is no evidence of a significant extent of proton transfer to give (CH2)2OH …X- in the isolated complexes. 相似文献
9.
《Journal of organometallic chemistry》1986,299(1):29-40
The hydrogenation of (CF3)nGeX4-n (X = halogen, n = 1–3) with NaBH4 in an acidic medium has been investigated. Deuteration with NaBD4 and D3PO4 gave the partially deuterated species CF3GeHnD3-n and (CF3)2GeHnD2-n in reasonable isotopic purity. The (CF3)2GeHBr was isolated and converted into the halides (CF3)2GeHX (X = F, Cl, I) by treatment with AgX or HX. Insertion of CF2 into a GeH bond has been observed, and (CF3)(CF2H)GeH2 has been characterized. Direct alkylation of GeH bonds was brought about by reaction with a mixture of RI and R′2Zn (R, R′= CH3, C2H5), and the methyl(trif]uoromethyl)germanes CF3GeH2(CH3), CF3GeH(CH3)2 and (CF3)2GeH(CH3) were isolated. For R = CD3, R′ = CH3 the product distribution can be accounted in terms of two competing mechanisms. 相似文献
10.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
11.
Christoph Loschen Katrin Voigt Jan Frunzke Axel Diefenbach Michael Diedenhofen Gernot Frenking 《无机化学与普通化学杂志》2002,628(6):1294-1304
We report about quantum chemical ab initio calculations at the MP2/6‐311+G(2d)//MP2/6‐31G(d) level and DFT calculations at BP86/TZP of the geometries and bond dissociation energies of the borane‐phosphane complexes X3B‐PY3 and the alane‐phosphane complexes X3Al‐PY3 (X = H, F, Cl; Y = F, Cl, Me, CN). The nature of the B‐P and Al‐P bonds is analyzed with a bond energy partitioning method. The calculated bond dissociation energies De of the borane adducts X3B‐PY3 show for the phosphane ligands the trend PMe3 > PCl3 ∼ PF3 > P(CN)3. A similar trend PMe3 > PCl3 > PF3 > P(CN)3 is predicted for the alane complexes X3Al‐PY3. The order of the Lewis acid strength of the boranes depends on the phosphane Lewis base. The boranes show with PMe3 and PCl3 the trend BH3 > BCl3 > BF3 but with PF3 and P(CN)3 the order is BH3 > BF3 > BCl3. The bond energies of the alane complexes show always the trend AlCl3 ≥ AlF3 > AlH3. The bonding analysis shows that it is generally not possible to correlate the trend of the bond energies with one single factor which determines the bond strength. The preparation energy which is necessary to deform the Lewis acid and Lewis base from the equilibrium form to the geometry in the complex may have a strong influence on the bond energies. The intrinsic interaction energies may have a different order than the bond dissociation energies. The trend of the interaction energies are sometimes determined by a single factor (Pauli repulsion, electrostatic attraction or covalent bonding) but sometimes all components are important. The higher Lewis acid strength of BCl3 compared with BF3 in strongly bonded complexes is not caused by the deformation energy of the fragments but it is rather caused by the intrinsic interaction energy. P(CN)3 is a weaker Lewis base than PF3, PCl3 and PMe3 mainly because of its weaker electrostatic attraction. The complex H3B‐P(CN)3 is predicted to have a bond dissociation energy Do = 14.8 kcal/mol which should be sufficient to synthesize the compound as the first adduct with the ligand P(CN)3. The calculated bond energies at the BP86 level are in most cases very similar to the MP2 results. In a few cases significantly different absolute values have been found which are caused by the method and not by the quality of the basis set. 相似文献
12.
Martin J. Packer Erik K. Dalskov Stephan P. A. Sauer Jens Oddershede 《Theoretical chemistry accounts》1994,89(5-6):323-333
Summary We report values of the correlated dynamic dipole polarizability for the halides HX and CH3X (X = F, Cl and Br). The polarizabilities are calculated within the second-order polarization propagator approximation (SOPPA). The correlated results are in much better agreement with the available experimental results, compared to RPA. We also report the second-order dipole moments using both the relaxed and unrelaxed MP2 density matrices. The relaxed results are in better agreement with experiment. 相似文献
13.
Comparative Computational Study of Hydrogen Abstraction Reactions of CY3H + XO− (X,Y = F,Cl, and Br)
Liang Junxi Su Qiong Zhao Dezhi Wang Yanbin Li Guihua Geng Zhiyuan 《Heteroatom Chemistry》2016,27(4):199-209
The effects of halogen substituents on the reactivity are characterized by the hybrid B3LYP and BHandHLYP functionals of density functional theory using the aug‐cc‐pVDZ basis set. The species XO− and CY3H, where X, Y = F, Cl, and Br, have been chosen as model reactants in this work. Also, the mechanism of the hydrogen abstraction (HAT) reaction has been used to study the chemical reactivity of these anionic reactions. Our theoretical findings suggest that the relative reactivity of the CY3H + XO− reactions increases as Y goes from F to Br and decreases as X goes from F to Br. Moreover, among all reactions investigated in this study, the special role of the Y has very dominant effect on activation of the C–H bond in CY3H when XO− attacks the CY3H. Again, through the transition state theory the rate constants at 298–1000 K are also evaluated for the HAT reactions, indicating the lower the temperature the faster is the chemical reaction. 相似文献
14.
Roszak S Koski WS Kaufman JJ Balasubramanian K 《SAR and QSAR in environmental research》2001,11(5-6):383-396
Theoretical studies of structures of neutral molecules and their anions as well as dissociative electron attachment properties are presented for the halomethanes of general formula CX(n) Y(m); X=H, F; Y=Cl, Br, I; n=0,4; m=4-n. The dissociative electron attachment seems to be the primary process resulting in toxicity of these species. The halomethane anions containing hydrogens are formed as radical-anion adducts. When H is replaced by F, these species become true sigma* radicals. The electron affinities are computed using a variety of computational techniques including the four-order M?ller-Plesset (MP4) technique that included 250 basis functions. It is challenging to compare the computed results with experiment due to dearth of experimental data and uncertainties in the existing experimental data. Thus in certain cases larger differences are found between the computed and experimental values. 相似文献
15.
On Potassium Dihalogenomonocyanomercurates(II) KHgX2CN · H2O (X = Cl, Br) Hydrates of the dihalogenomonocyanomercurates KHgX2CN · H2O (X = Cl, Br) are obtained by reactions of equimoleculare amounts of HgX2 and KCN in aqeuous solutions. The crystal structure of the rhombic KHgBr2CN · H2O (a = 454.2 pm; b = 1738.1 pm; c = 465.1 pm; Pmmm; Z = 2) contains linear HgBr2 and Hg(CN)2 groups and isolated Br? and K+ ions. Therefore the compound can be formulated as a double salt Hg(CN)2 · HgBr2 · 2 KBr · 2 H2O. The chloro compound is isotype. 相似文献
16.
Xiaoyan Li Lingpeng Meng Yanli Zeng Xueying Zhang Shijun Zheng 《International journal of quantum chemistry》2011,111(12):3070-3079
We present theoretical evidence that the two types of interactions exist in the complexes formed between methylenecyclopropane (MECP) and XY (X, Y = H, F, Cl, and Br). Two seats of XY interacted with MECP are located: (a) is via the pseudo‐π bonding electron pair associated with a C? C bond of the cyclopropane ring and (b) is via the typical‐π bonding of electron pair of the C?C bond of MECP. These two types of weak interactions are compared based on the calculated geometries, interaction energies, frequency changes, and topological properties of electron density. The integration of electron density over the interatomic surface is found to be a good measure for the strength of weak interaction. Furthermore, the total electron density and separated σ and π electron densities are also computed and discussed in this article. The separated electron density shows σ electron density determined the strength and π electron density influenced the direction of the hydrogen/halogen bond. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
17.
S. Roszak W. S. Koski J. J. Kaufman K. Balasubramanian 《SAR and QSAR in environmental research》2013,24(5-6):383-396
Abstract Theoretical studies of structures of neutral molecules and their anions as well as dissociative electron attachment properties are presented for the halomethanes of general formula CX n Y m ; X = H, F; Y = Cl, Br, I; n = 0,4; m = 4 – n. The dissociative electron attachment seems to be the primary process resulting in toxicity of these species. The halomethane anions containing hydrogens are formed as radical-anion adducts. When H is replaced by F, these species become true σ? radicals. The electron affinities are computed using a variety of computational techniques including the four-order M?ller-Plesset (MP4) technique that included 250 basis functions. It is challenging to compare the computed results with experiment due to dearth of experimental data and uncertainties in the existing experimental data. Thus in certain cases larger differences are found between the computed and experimental values. 相似文献
18.
采用CCSD/6-311++G(d,p)//B3LYP/6-311++G(d,p)方法研究了HCHO与卤素原子X(X=F、Cl、Br)的反应机理. 计算结果表明, 卤素原子X(X=F、Cl、Br)主要通过直接提取HCHO中的H原子生成HCO+HX(X=F、Cl、Br). 另外还可以生成稳定的中间体, 中间体再通过卤原子夺氢和氢原子直接解离两个反应通道分别生成HCO+HX(X=F、Cl、Br)和H+XCHO(X=F、Cl、Br). 其中卤原子夺氢通道为主反应通道, HCO和HX(X=F、Cl、Br)为主要的反应产物; 且三个反应的活化能均较低, 说明此类反应很容易进行, 计算结果与实验结果符合很好. 电子密度拓扑分析显示, 在HCHO+X反应通道(b)中出现了T型结构过渡态, 结构过渡态(STS)位于能量过渡态(ETS)之后. 并且按F、Cl、Br的顺序, 结构过渡态出现得越来越晚. 相似文献
19.
Equilibrium geometries, interaction energies, atomic charge, and charge transfer for the intermolecular interactions between furan and dihalogen molecules XY(X; Y=F,Cl,Br) were studied at the MP2aug-cc-pVDZ level. Three types of geometry are observed in these interactions: the pi-type geometry (I), in which the XY lies above the furan ring and almost perpendicularly to the C4-C5 bond of furan; the sigma-type geometry (II), where the X atom is pointed toward the nonbonding electron pair (n pair) of oxygen atom in furan; and the chi-type geometry (III), describing a blueshift hydrogen bond formed between the hydrogen atom of furan and dihalogen molecules XY. The calculated interaction energies show that the pi-type structures are more stable than the corresponding sigma-type and chi-type structures. To study the nature of the intermolecular interactions, an energy decomposition analysis was carried out and the results indicate that both the pi-type and sigma-type interactions are dominantly inductive energy in nature, while dispersion energy governs the chi-type interactions. 相似文献
20.
G. L. Gutsev 《Journal of Structural Chemistry》1989,30(5):733-737
The electronic structures of the Cl3
–, Br3
–, I3
–, BrCl2
–, BrI2
–, BrICl–, and BrII– anions were calculated using the discrete variational X method. These calculations showed that the adiabatic electron affinity (EA) of the corresponding trihalogen molecules is close to the vertical EA and first vertical ionization potential (IP) of the corresponding singly charged anions. The calculated first IP of all these anions are rather similar (3.3–3.8 eV). Thus, these trihalides may be considered weak superhalogens.Branch of the Institute of Chemical Physics, Academy of Sciences of the USSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 30, No. 5, pp. 41–47, September–October, 1989. 相似文献