首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the Ro?ssler system, a Sprott system, and a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.  相似文献   

2.
We introduce a type of cyclic coupling to investigate synchronization of chaotic oscillators. We derive analytical solutions of the critical coupling for stable synchronization under the cyclic coupling for the Rössler system and the Lorenz oscillator as paradigmatic illustration. Based on the master stability function (MSF) approach, the analytical results on critical coupling are verified numerically. An enhancing effect in terms of lowering the critical coupling or enlarging the synchronization window in a critical coupling space is noticed. The cyclic coupling is also applied in other models, Hindmarsh-Rose model, Sprott system, Chen system and forced Duffing system to confirm the enhancing effect. The cyclic coupling allows tuning of two coupling constants in reverse directions when an optimal control of synchronization is feasible.  相似文献   

3.
We propose a design of coupling for stable synchronization and antisynchronization in chaotic systems under parameter mismatch. The antisynchronization is independent of the specific symmetry (reflection symmetry, axial symmetry, or other) of a dynamical system. In the synchronization regimes, we achieve amplification (attenuation) of a chaotic driver in a response oscillator. Numerical examples of a Lorenz system, R?ssler oscillator, and Sprott system are presented. Experimental evidence is shown using an electronic version of the Sprott system.  相似文献   

4.
Considering a system of two coupled identical chaotic oscillators, the paper first establishes the conditions of transverse stability for the fully synchronized chaotic state. Periodic orbit threshold theory is applied to determine the bifurcations through which low-periodic orbits embedded in the fully synchronized state lose their transverse stability, and the appearance of globally and locally riddled basins of attraction is discussed, respectively, in terms of the subcritical, supercritical nature of the riddling bifurcations. We show how the introduction of a small parameter mismatch between the interacting chaotic oscillators causes a shift of the synchronization manifold. The presence of a coupling asymmetry is found to lead to further modifications of the destabilization process. Finally, the paper considers the problem of partial synchronization in a system of four coupled R?ssler oscillators.  相似文献   

5.
6.
The effect of noise on phase synchronization in small sets and larger populations of weakly coupled chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results from the interplay between noise and the locking features of unstable periodic orbits. We show that in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the weak coupling region. The interplay between noise and weak coupling induces a collective motion in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase synchronization and the coherence resonance numerically observed in coupled chaotic R?ssler oscillators are verified experimentally with an array of chaotic electrochemical oscillators.  相似文献   

7.
Anomalous phase synchronization in nonidentical interacting oscillators is manifest as the increase of frequency disorder prior to synchronization. We show that this effect can be enhanced when a time-delay is included in the coupling. In systems of limit-cycle and chaotic oscillators we find that the regions of phase disorder and phase synchronization can be interwoven in the parameter space such that as a function of coupling or time-delay the system shows transitions from phase ordering to disorder and back.  相似文献   

8.
We describe two experiments in which we investigate the synchronization of coupled periodic oscillators. Each experimental system consists of two identical coupled electronic periodic oscillators that display bursts of desynchronization events similar to those observed previously in coupled chaotic systems. We measure the degree of synchronization as a function of coupling strength. In the first experiment, high-quality synchronization is achieved for all coupling strengths above a critical value. In the second experiment, no high-quality synchronization is observed. We compare our results to the predictions of the several proposed criteria for synchronization. We find that none of the criteria accurately predict the range of coupling strengths over which high-quality synchronization is observed. (c) 2000 American Institute of Physics.  相似文献   

9.
高心  虞厥邦 《中国物理》2005,14(8):1522-1525
近年来对分数阶系统的动力学研究得到了较为广泛的关注。本文研究了基于主-从耦合同步法的同步技术并实现了两个耦合的分数阶振荡器的混沌同步。仿真结果表明:在适当的耦合强度的调节下,该方法可实现两个耦合分数阶混沌振荡器的准确同步,且分数阶混沌振荡器的同步率明显慢于整数阶混沌振荡器的同步率;而耦合分数阶混沌振荡器在实现同步的过程中,随着阶数的提高,同步误差曲线变得平滑,这表明,系统阶数的提高改善了耦合混沌振荡器实现同步的平稳性。  相似文献   

10.
We report experimental evidence of mixed synchronization in two unidirectionally coupled chaotic oscillators using a scalar coupling. In this synchronization regime, some of the state variables may be in complete synchronization while others may be in anti-synchronization state. We extended the theory by using an adaptive controller with an updating law based on Lyapunov function stability to include parameter fluctuation. Using the scheme, we implemented a cryptographic encoding for digital signal through parameter modulation.  相似文献   

11.
卢静  张荣  徐振源 《物理学报》2010,59(9):5949-5953
研究用适当的量化指标来刻画动态网络的相同步,为此定义了新的量化指标:相邻结点的网络平均锁相值和网络平均相频差.动态网络结点选择的是多旋转中心的Lorenz混沌振子,对Lorenz系统进行柱面坐标变换,用振幅耦合方法构造动态网络.分别对星形网络和小世界网络进行了仿真计算,结果表明随着耦合强度的增大,网络中相邻结点的两个系统之间存在相同步现象,而且相同步行为与定义的量化指标之间存在较准确的对应关系.  相似文献   

12.
We report a method of engineering generalized synchronization (GS) in chaotic oscillators using an open-plus-closed-loop coupling strategy. The coupling is defined in terms of a transformation matrix that maps a chaotic driver onto a response oscillator where the elements of the matrix can be arbitrarily chosen, and thereby allows a precise control of the GS state. We elaborate the scheme with several examples of transformation matrices. The elements of the transformation matrix are chosen as constants, time varying function, state variables of the driver, and state variables of another chaotic oscillator. Numerical results of GS in mismatched Ro?ssler oscillators as well as nonidentical oscillators such as Ro?ssler and Chen oscillators are presented.  相似文献   

13.
The time-scale synchronization of chaotic oscillations in two dissipatively coupled radiofrequency chaotic oscillators has been experimentally studied. The effect of noise on the efficiency of chaotic synchronization diagnostics is analyzed and a high stability of time-scale synchronization to noise in the coupling channel between the oscillators is shown.  相似文献   

14.
We study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment or a common medium. We observed that this form of indirect coupling leads to synchronization and phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with examples of Landau-Stuart and Ro?ssler oscillators. The dynamical transitions are characterized using various indices such as average phase difference, frequency, and Lyapunov exponents. Experimental evidence of the phase-flip transition is shown using an electronic version of the van der Pol oscillators.  相似文献   

15.
In the paper, complete synchronization of two chaotic oscillators via unidirectional coupling determined by white noise distribution is investigated. It is analytically proved that chaos synchronization could be achieved with probability one merely via white-noise-based coupling. The established theoretical result supports the observation of an interesting phenomenon that a certain kind of white noise could enhance chaos synchronization between two chaotic oscillators. Furthermore, numerical examples are provided to illustrate some possible applications of the theoretical result.  相似文献   

16.
We generalize the n:m phase synchronization between two chaotic oscillators by mutual coupling phase signals. To characterize this phenomenon, we use two coupled oscillators to demonstrate their phase synchronization with amplitudes practically noncorrelated. We take the 1:1 phase synchronization as an example to show the properties of mean frequencies, mean phase difference, and Lyapunov exponents at various values of coupling strength. The phase difference increases with 2pi phase slips below the transition. The scaling rules of the slip near and away from the transition are studied. Furthermore, we demonstrate the transition to a variety of n:m phase synchronizations and analyze the corresponding coupling dynamics. (c) 2002 American Institute of Physics.  相似文献   

17.
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.  相似文献   

18.
We investigate chaotic phase synchronization (CPS) in three-coupled chaotic oscillator systems. According to the coupling strength and mismatches in the frequencies of these oscillators, we can observe complete CPS where all three oscillators exhibit CPS, and partial CPS where only two oscillators exhibit CPS. When the coupling strength is weakened, we observe a phenomenon that complete CPS among the three oscillators is suddenly disrupted without going through partial CPS. In this case oscillators exhibit quasi-CPS where two oscillators appear to exhibit CPS transiently, and the combination of the two oscillators changes with time. We call this phenomenon CPS switching D. It is revealed that phase fluctuation plays an important role in CPS switching D. It is also shown that the amplitude with a specific structure strengthens the degree of CPS switching. In the present paper, we characterize this CPS switching and discuss its mechanism.  相似文献   

19.
We propose a method for the determination of a characteristic oscillation frequency for a broad class of chaotic oscillators generating complex signals. It is based on the locking of standard periodic self-sustained oscillators by an irregular signal. The method is applied to experimental data from chaotic electrochemical oscillators, where other approaches of frequency determination (e.g., based on Hilbert transform) fail. Using the method we characterize the effects of phase synchronization for systems with ill-defined phase by external forcing and due to mutual coupling.  相似文献   

20.
We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号