首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes platinum(II) complexes of 6-(2-pyridyl)-dipyrido[3,2- a:2',3'- c]phenazine (dppzp) and 6-phenyl-dipyrido[3,2- a:2',3'- c]phenazine (dppzphi). The [Pt(dppzp)Cl] (+) ( 1) system exhibits an excited-state lifetime of 5.0 micros in deoxygenated dichloromethane. Lewis bases quench the emission with rate constants on the order of 10 (7) M (-1) s (-1); however, acetic acid is definitely not a quencher. The carbometalated [Pt(dppzphi)Cl] ( 2) complex is novel in that it is subject to quenching by acid as well. In deoxygenated 2-chloronaphthalene, the excited-state lifetime of 2 is 270 ns, and acetic acid quenches the emission with a rate constant of 2 x 10 (8) M (-1) s (-1). In addition, Lewis bases like dimethyl sulfoxide and dimethylformamide quench the emission of 1 and 2 with similar efficiencies. The coordinatively unsaturated platinum center provides a logical place for attack by Lewis bases, whereas the phenazine extension of dppzphi introduces potentially acid-sensitive nitrogen centers. The emissive states of 1 and 2 exhibit mainly intraligand character, but enhanced charge-transfer character in 2 accounts for the differences in reactivity.  相似文献   

2.
Neutral orthometalated platinum(II) complexes of the deprotonated 6-phenyl-2,2'-bipyridine ligand (bearing a trialkoxygallate, tolyl, ethynyltrialkoxygallate, or ethynyltolyl substituent) and a sigma-bonded Cl, ethynyltolyl, or ethynyltrialkoxygallate coligand have been prepared by a stepwise procedure based on copper-promoted cross-coupling reactions. The X-ray structure of the [2-(p-tolyl)ethynyl][4-{2-(p-tolyl)ethynyl}-6-phenyl-2,2'-bipyridyl)]platinum(II) complex revealed a coplanar arrangement of all residues bound to platinum, although the tolylethynyl groups exhibit position-dependent bending in the solid state. The complexes exhibit charge-transfer absorption in the visible region. All except two of the complexes also exhibit charge-transfer emission, typically from an excited state that has a submicrosecond lifetime at room temperature in deoxygenated dichloromethane solution. In accordance with the presence of a carbometalated polypyridine ligand, the emitting state is assumed to have a mixture of metal-to-ligand charge-transfer (MLCT) and intra-ligand charge-transfer (ILCT) character. However, spectral comparisons and electrochemical data suggest that the emissive state also exhibits interligand charge-transfer (LLCT) character when an electron-rich ethynylaryl group is bound to platinum. In keeping with altered orbital parentage in the latter systems, the emission occurs at longer wavelength. The excited-state lifetime is also shorter, evidently due to vibronic interactions. The decay is so efficient when an ethynyltrialkoxygallate group binds to platinum that there is no detectable emission in fluid solution, although the complexes do emit in a frozen glass. The excited states are subject to associative (exciplex) quenching by Lewis bases, but the admixture of ILCT and/or LLCT character diminishes efficiency, except for relatively strong bases like dimethyl sulfoxide and dimethylformamide.  相似文献   

3.
The ligand 2-(8'-quinolinyl)-1,10-phenanthroline (1) was prepared in 79% yield by the Friedlander condensation of 8-amino-7-quinolinecarbaldehyde and 8-acetylquinoline. The complex [Pt(1)Cl]+ was prepared and compared with the isomeric 2-(2'-quinolinyl)-1,10-phenanthroline (2) complex. An X-ray analysis indicated that the six-membered chelate ring in the tridentate complex resulted in a relief of angle strain as well as some non-planarity in the bound ligand 1. The control system for photophysical studies is [Pt3Cl]+ where denotes 2-(2'-pyridyl)-1,10-phenanthroline. Relative to the complex of 3, in dichloromethane solution [Pt(1)Cl]+ exhibits noticeably higher energy charge-transfer absorption but slightly lower energy emission. The gap between the onset of absorption and emission is larger because the emission from [Pt(1)Cl]+ originates from a triplet excited state with substantial intra-ligand character. At room temperature in deoxygenated dichloromethane, [Pt(1)Cl]+ has an excited-state lifetime of 310 ns vs. 230 ns for [Pt(1)Cl]+. Within the series, [Pt(1)Cl]+ also exhibits the largest activation barrier for thermally induced quenching at 2730 cm(-1) in fluid dichloromethane solution. However, the barrier is only about 50% larger than that found for [Pt(1)Cl]+. There is reduced ring strain in [Pt(1)Cl]+, but inter-ligand steric interactions weaken the ligand field.  相似文献   

4.
Photoinduced electron transfer from two intercalating photoactive donors, Ru(phen)2dppz2+ and ethidium, to intercalating viologen acceptors of the N,N'-dialkyl-6-(2'-pyridiniumyl)phenanthridinium family has been investigated through steady-state and time-resolved luminescence quenching measurements. Efficient quenching of the emission from these donors bound to DNA is observed at low concentrations of acceptor (1-10 eq.), and in time-resolved emission experiments it is determined that electron transfer occurs on the nanosecond time scale. Furthermore, transient absorption measurements confirm that the quenching is the result of a charge-transfer process; upon photoreaction of intercalated Ru(phen)2dppz2+ with a viologen acceptor, an intermediate with spectral properties resembling the expected charge-separated pair is observed. The quenching yields and kinetics obtained with this quencher are in marked contrast to those observed with these same donors paired with Rh(phi)2bpy3+ as an acceptor. The differing efficiencies of electron transfer for these donor/acceptor pairs bound to DNA as compared to others previously described are discussed qualitatively in terms of the structural and electronic properties of the different reactants.  相似文献   

5.
The synthesis, structural characterization, and photoluminescence properties of a new platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine], are described. In CH2Cl2, Pt(dbbpy)(tda) exhibits a strong visible charge-transfer absorption and broad emission centered at 562 nm. The photoluminescence quantum yield and excited-state lifetime are 0.52 and 2.56 mus, respectively, at room temperature. These parameters indicate that the planarization and rigidity introduced by the cyclic diacetylide leads to a lower-energy-absorbing species displaying enhanced photophysics relative to the analogous Pt(dbbpy)(CCPh)2. Time-dependent density functional theory calculations, which include solvation by CH2Cl2 via the polarizable continuum model, are used to reveal the nature of the excited states in these molecules that are responsible for the charge-transfer transitions. The 77 K emission spectra of the two compounds in EtOH/MeOH glasses are compared, uncovering tda-based ligand-localized phosphorescence in the title compound.  相似文献   

6.
The results of electrochemical measurements, density-functional theory calculations, emission and time-resolved IR (TRIR) spectroscopic studies for fac-[ReCl(CO)3(dppz-X2)], (dppz = dipyrido[3,2-a:2',3'-c]phenazine; X = CH3, H, F, Cl, CF3) are reported. For all complexes the calculations show that the lowest unoccupied molecular orbital (LUMO) is a phenazine based orbital localized on the dppz ligand. We observe that three different excited states, IL pi pi*, metal-to-ligand charge-transfer (MLCT) (phen), and MLCT (phz), are formed depending upon the substituent on the dppz ligand and on the nature of the solvent. This means that both the energy and the nature of the photophysically active state(s) can be tuned by both chemical modification of dppz ligand and solvent properties. The excited-state dynamics in these systems is directly related to the mechanism of the "light switch effect", and ps-TRIR has allowed a deeper insight into this mechanism by being able to directly monitor the change in the population of the higher lying emissive phen-type (3)MLCT and IL pi pi* states and the dark (3)MLCT (phz) state depending on the different environmental factors.  相似文献   

7.
Pt(trpy)Cl+, where trpy denotes 2,2':6',2' '-terpyridine, is a versatile binding agent but has a limited photochemistry due to a short excited-state lifetime. However, this work shows that the introduction of aryl substituents at the 4' position of the trpy ligand drastically alters the picture. For the substituents phenyl, p-methoxyphenyl, 1-naphthyl, 2-naphthyl, 9-phenanthrenyl, and 1-pyrenyl, the ligand abbrevations are 4'-Ph-T, 4'-pMeOPh-T, 4'-Npl-T, 4'-Np2-T, 4'-Phe9-T, and 4'-Pyre1-T, respectively. Techniques utilized include electrochemistry as well as absorption and emission spectroscopies. While the lowest energy excited states of Pt(4'-Ph-T)Cl+ and the parent complex Pt(trpy)Cl+ exhibit mainly metal-to-ligand charge-transfer (MLCT) character, the emitting state takes on aryl-to-trpy intraligand charge-transfer (ILCT) character as the substituents become more electron-donating. Studies of Zn(trpy)Cl2, its aryl-substituted analogues, and the free ligands themselves provide information about the relative energies of participating ILCT and intraligand 3pi-pi excited states. Even though the emission energy decreases when larger aryl groups are present, the emission lifetime increases all the way from 85 ns for Pt(4'-Ph-T)Cl+ to 64 micros for Pt(4'-Pyre1-T)Cl+. (Data from deoxygenated, room-temperature dichloromethane solution.) Intraligand character appears to dominate in the case of Pt(4'-Pyre1-T)Cl+, which is unique in the series in that it exhibits singlet and triplet emissions in solution. In aerated solution the complex shows prompt as well as delayed fluorescence. Finally, studies in donor media establish that the introduction of intraligand character inhibits solvent-induced exciplex quenching.  相似文献   

8.
Novel donor–acceptor–donor (D–A–D) π-conjugated molecules based on a dipyrido[3,2-a:2′,3′-c]phenazine (dppz) skeleton were synthesized, and their luminescent properties were investigated. Introduction of various aryl substituents to the 10- and 13-positions of dppz allowed us to tune the emission properties through modulation of the intramolecular charge transfer (ICT) character on the D–A–D chromophores. Coordination of platinum(II) to the diimine site of dppz also gave rise to facilitation of the ICT to induce a significant red shift of the emission.  相似文献   

9.
The intercalation of fac-[(4,4'-bpy)Re(I)(CO)3(dppz)]+ (dppz = dipyridyl[3,2-a:2'3'-c]phenazine) in polynucleotides, poly[dAdT]2 and poly[dGdC]2, where A = adenine, G = guanine, C = cytosine and T = thymine, is a major cause of changes in the absorption and emission spectra of the complex. A strong complex-poly[dAdT]2 interaction drives the intercalation process, which has a binding constant, Kb approximately 1.8 x 10(5) M(-1). Pulse radiolysis was used for a study of the redox reactions of e(-)(aq), C*H(2)OH and N3* radicals with the intercalated complex. These radicals exhibited more affinity for the intercalated complex than for the bases. Ligand-radical complexes, fac-[(4,4'-bpy*)Re(I)(CO)3(dppz)] and fac-[(4,4'-bpy)Re(I)(CO)3(dppz *)], were produced by e(-)(aq) and C*H(2)OH, respectively. A Re(II) species, fac-[(4,4'-bpy)Re(II)(CO)3(dppz)](2+), was produced by N3* radicals. The rate of annihilation of the ligand-radical species was second order on the concentration of ligand-radical while the disappearance of the Re(II) complex induced the oxidative cleavage of the polynucleotide strand.  相似文献   

10.
This research deals with the synthesis and characterization of a new series of platinum(II) polypyridine complexes that incorporate a relatively rigid and hydrophobic ligand. The parent complex Pt(php)Cl(+), where php denotes 2-(2'-pyridyl)-1,10-phenanthroline, resembles Pt(trpy)Cl(+), where trpy denotes 2,2':6',2'-terpyridine, but is photoluminescent in solution. Hence php derivatives should prove to be superior tags and/or spectroscopic probes for biological systems. A theoretical analysis reveals some of the advantages of php over trpy as a platform. Due to a ligand pi system with a relatively small HOMO-LUMO gap, the emission from Pt(php)Cl(+) exhibits significant vibrational structure and a mixed (3)pi-pi*/(3)d-pi* orbital parentage. In deoxygenated dichloromethane solution the php complex exhibits an emission quantum yield of 3.1 x 10(-3) and an excited-state lifetime of 0.23 micros at room temperature. However, methyl groups have an unusually strong stereoelectronic influence, particularly at the 5,6-positions of the phenanthroline moiety. The platinum(II) complex with 2-(2'-pyridyl)-3,5,6,8-tetramethyl-1,10-phenanthroline is the best emitter with an emission yield of 0.055 and a lifetime of 9.3 micros in dichloromethane. Strongly donating solvents like dimethylformamide are potent quenchers of the emission. The methods of characterization used include absorption and emission spectroscopies, electrochemistry, and, in the case of [Pt[2-(2'-pyridyl)-4,7-dimethyl-1,10-phenanthroline]Cl]O(3)SCF(3), X-ray crystallography. Another intriguing finding is that methyl substituents have preferred orientations with respect to the phenanthroline ligand.  相似文献   

11.
Lu W  Vicic DA  Barton JK 《Inorganic chemistry》2005,44(22):7970-7980
Several photoactive platinum alpha-diimine intercalators have been prepared to develop new probes of DNA oxidation and reduction chemistry. Five water-soluble bis(mes')Pt(II) complexes (mes' = N,N,N,3,5-pentamethylaniline) with various aromatic alpha-diimine ligands (dppz = dipyridophenazine, np = naphtha[2,3-f][1,omega]phenanthroline, CN-np = naphtho[2,3-f][1,10]phenanthroline-9-carbonitrile, CN(2)-np = naphtho[2,3-f][1,10]phenanthroline-9,14-dicarbonitrile, and bp = benzo-[f][1,10]phenanthroline) were synthesized. The complex [(np)Pt(mes')(2)]Cl(2) was also characterized by X-ray crystallography, and the crystal structure shows that the ortho-methyl groups of the mes' ligands conveniently block substitution at the vacant sites of platinum without overlapping with the intercalating alpha-diimine ligand. The Pt(II) complexes were found to have excited-state oxidation and reduction potentials of -0.6 to -1.0 and 1.0 to 1.5 V versus NHE, respectively, making them potent photoreductants as well as photooxidants. Many of the complexes are found to promote the photooxidation of N(2)-cyclopropyldeoxyguanosine (d(Cp)G). Photoexcited [(dppz)Pt(mes')(2)](2+) is found to be most efficient in this photooxidation, as well as in the photoreduction of N(4)-cyclopropylcytidine ((Cp)C); these modified nucleosides rapidly decompose in a ring-opening reaction upon oxidation or reduction. Photoexcited [(dppz)Pt(mes')(2)]Cl(2), upon intercalation into the DNA pi stack, is found, in addition, to promote reductive and oxidative damage within the DNA duplex, as is also probed using the kinetically fast electron and hole traps, (Cp)C and (Cp)G. These Pt complexes may therefore offer useful reactive tools to compare and contrast directly reductive and oxidative chemistry in double helical DNA.  相似文献   

12.
A novel Pt(Ⅱ)-based metallointercalator terpyridine complex linked with a 2, 2, 6, 6-tetramethyl-1-piperidinyl N-oxide (TEMPO) derivative was prepared by a reaction between 4'-TEMPO-terpyridine (L) and a Pt(Ⅱ) salt. This complex presented unusual luminescence quenching owing to the effect of the stable nitroxide radical. The crystal structure of[Pt(terpy-TEMPO)Cl]Cl·H2O·CH3OH (terpy=2, 2':6', 2"-terpyridine) was elucidated by X-ray crystallography. Additionally, the effect of TEMPO on the photophysical properties of[Pt(terpy-TEMPO)Cl] Cl·H2O·CH3OH was investigated by UV-Vis, fluorescence emission, and electron paramagnetic resonance (EPR) spectroscopy. Data from the absorption and luminescence properties (298 K) of the[Pt(terpy-TEMPO)Cl]+ complex indicated the presence of two groups of typical bands:an intense band B with distinct vibronic structures (270-350 nm, ε>104 dm3·mol-1·cm-1) and a less intense band A (370-450 nm, ε~103 dm3·mol-1·cm-1). These two bands are generally assigned to ligand-to-ligand charge transfer (LLCT) and metal-to-ligand charge transfer (MLCT) excited states, respectively. Furthermore, efficient photoluminescent quenching behavior was observed in the emission spectra of this complex system. Quantum calculations of the molecular energy gaps and bands were performed by Gaussian 09 software. The calculated results verified that TEMPO greatly affects the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Thus, the relationship between efficient photoquenching and molecular structure was theoretically interpreted. EPR results indicated that when TEMPO is attached to a macrocyclic terpyridine platinum complex, e.g., [Pt(terpy)Cl]+, the terpyridine platinum complex does not affect the hyperfine coupling constant (A value) and g factor (g values) but the rotation and relaxation times of the TEMPO radical.  相似文献   

13.
The direct ion exchange of chloro(2,6-bis(N-methylbenzimidazol-2-yl)pyridine)platinum(II) ([Pt(Me(2)bzimpy)Cl]+) and chloro(2,2':6',2' '-terpyridine)platinum(II) ([Pt(tpy)Cl]+) complexes within a zirconium phosphate (ZrP) framework has been accomplished. The physical and spectroscopic properties of [Pt(Me(2)bzimpy)Cl]+ and [Pt(tpy)Cl]+ intercalated in ZrP were investigated by X-ray powder diffraction and X-ray photoelectron, infrared, absorption, and luminescence spectroscopies. In contrast to unintercalated complexes in fluid solution, which do not emit at room temperature, both intercalated materials in the solid state and in colloidal suspensions exhibit intense emissions at room temperature. A [Pt(Me(2)bzimpy)Cl]+-exchanged ZrP colloidal methanol suspension gives rise to an emission at 612 nm that originates from a lowest (3)MMLCT[dsigma*(Pt) --> pi*(tpy)] state (MMLCT = metal-metal-to-ligand charge transfer) characteristic of strong Pt...Pt interactions. A [Pt(tpy)Cl]+-exchanged ZrP colloidal aqueous suspension exhibits a strong emission band at 600 nm. The accumulated data demonstrate that at high concentrations, [Pt(Me(2)bzimpy)Cl]+ and [Pt(tpy)Cl]+ ions can serve as luminescent pillars inside the ZrP framework.  相似文献   

14.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

15.
本文报道了2个新的Cu(Ⅰ)配合物:[Cu(PPh3)2(dppz)]I(1)(PPh3=三苯基膦,dppz=二吡啶并[3,2-a∶2′,3′-c]吩嗪)和[Cu2(dppm)2(dppz)2]Cl2(2)(dppm=双(二苯基膦)甲烷)的合成,并通过X射线单晶衍射、元素分析、核磁共振氢(膦)谱、荧光光谱和太赫兹时域光谱对其进行了分析和表征。分析结果显示配合物1是一个单核配合物,中心Cu(Ⅰ)离子与2个含膦配体(PPh3)和1个含氮配体(dppz)进行配位,形成了一个扭曲的四面体结构。与1不同的是,配合物2是由CuCl,dppm和dppz以1∶1∶1的比例混配得到的双核配合物。其中,双膦配体dppm作为桥联配体,连接了2个Cu(Ⅰ)离子。荧光光谱表明所有的发射峰均源于金属到配体的电荷转移跃迁(MLCT)。同时,使用太赫兹时域光谱技术表征了2种配合物以及相应的配体。  相似文献   

16.
通过接枝含醛基的铂配合物Pt(N^C^N)Cl(N^C^N=1,3-二吡啶基苯)到聚二甲基硅氧烷(PDMS)骨架上,制备了一种弹性橙红色薄膜(PDMS-PtL1)。PDMS-PtL1薄膜具有很好的拉伸性(高达1500%的应变),并表现出较好的室温自修复性能。此外,PDMSPt L1薄膜表现出有趣的拉伸诱导的发光变化,拉伸后可以检测到单分子态铂配合物的~3π-π*发射。该弹性薄膜有效避免了铂配合物发光淬灭的现象,并且实现了外力诱导的发射态转换。  相似文献   

17.
A series of dinuclear platinum(II)-lanthanide(iii) complexes has been prepared in which a square-planar Pt(II) unit, either [(PPh(3))(2)Pt(pdo)] (H(2)pdo=5,6-dihydroxyphenanthroline) or [Cl(2)Pt(dppz)] [dppz=2,3-bis(2-pyridyl)pyrazine], is connected to a Ln(dik)(3) unit ("dik"=a 1,3-diketonate ligand). The mononuclear complexes [(PPh(3))(2)Pt(pdo)] and [Cl(2)Pt(dppz)] both have external, vacant N,N-donor diimine-type binding sites that react with various [Ln(dik)(3)(H(2)O)(2)] units to give complexes [(PPh(3))(2)Pt(micro-pdo)Ln(tta)(3)] (series A; Htta=thenoyltrifluoroacetone), [Cl(2)Pt(micro-dppz)Ln(tta)(3)] (series B); and [Cl(2)Pt(micro-dppz)Ln(btfa)(3)] (series C; Hbtfa=benzoyltrifluoroacetone); in all of these the lanthanide centres are eight-coordinate. The lanthanides used exhibit near-infrared luminescence (Nd, Yb, Er). Crystal structures of members of each series are described. In all complexes, excitation into the Pt-centred absorption band (at 520 nm for series A complexes; 440 nm for series B and C complexes) results in characteristic near-IR luminescence from the Nd, Yb or Er centres in both the solid state and in CH(2)Cl(2), following energy-transfer from the Pt antenna chromophore. This work demonstrates how d-block-derived chromophores, with their intense and tunable electronic transitions, can be used as sensitisers to achieve near-infrared luminescence from lanthanides in suitably designed heterodinuclear complexes based on simple bridging ligands.  相似文献   

18.
Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand. Remarkably, the complex with n=1 exhibits luminescence from the Ru(2+)-->dppz metal-to-ligand charge-transfer ((3)MLCT) state, whereas for the other two complexes, a radiationless pathway via electron transfer from a second TTF-dppz ligand quenches the (3)MLCT luminescence. The TTF fragments as electron donors thus induce a ligand-to-ligand charge-separated (LLCS) state of the form TTF-dppz- -Ru(2+)-dppz-TTF(+). The lifetime of this LLCS state is approximately 2.3 micros, which is four orders of magnitude longer than that of 0.4 ns for the ILCT state, because recombination of charges on two different ligands is substantially slower.  相似文献   

19.
A series of platinum(II) complexes with 1,3-bis(2-pyridylimino)isoindoline (BPI) derivatives were prepared by substitution of the coordinated Cl in the precursor complex Pt(BPI)Cl with a N-heterocyclic ligand such as pyridine, phthalazine or phenanthridine. These complexes display orange to red luminescence in fluid dichloromethane solutions and in the solid states at room temperature. The photophysical properties were tuned by introducing electron-withdrawing -NO(2) or electron-donating -NH(2) to the BPI ligand. The DFT computational studies suggest that the emission in the N-heterocyclic ligand substituted platinum(II) complexes originates mainly from the (3)[π→π*(BPI)] (3)IL triplet excited state, mixed with some (3)[dπ(Pt)→π*(BPI)] (3)MLCT character. Compared with the precursor Pt(BPI)Cl, both the low-energy absorption and the emission in the N-heterocyclic ligand substituted platinum(II) complexes exhibits a distinct blue-shift due to an obviously enhanced contribution from the (3)IL state and a reduced (3)MLCT character.  相似文献   

20.
The reduction of dipyridil[3,2-a:2'3'-c]phenazine, dppz, by pulse radiolytically generated e(-)(sol) or by the reaction of the dppz excited states with electron donors produces the radical dppzH(.). The dimer radical, (dppz)(2)H(.), exists in equilibrium with dppz with an association constant, K = 10(3) M(-1). The rate constant for the reaction of dppzH(.) with dppz is k = 4.3 x 10(6) M(-1) s(-1). DFT calculations on the structures of dppzH(.) and the doubly reduced and doubly protonated dppzH(2) rendered a planar structure for the former species and a bent one for the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号