首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Titanate nanofibers of various sizes and layered structure were prepared from inorganic titanium compounds by hydrothermal reactions. These fibers are different from "refractory" mineral substances because of their dimension, morphology, and significant large ratio of surface to volume, and, surprisingly, they are highly reactive. We found, for the first time, that phase transitions from the titanate nanostructures to TiO(2) polymorphs take place readily in simple wet-chemical processes at temperatures close to ambient temperature. In acidic aqueous dispersions, the fibers transform to anatase and rutile nanoparticles, respectively, but via different mechanisms. The titanate fibers prepared at lower hydrothermal temperatures transform to TiO(2) polymorphs at correspondingly lower temperatures because they are thinner, possess a larger surface area and more defects, and possess a less rigid crystal structure, resulting in lower stability. The transformations are reversible: in this case, the obtained TiO(2) nanocrystals reacted with concentrate NaOH solution, yielding hollow titanate nanotubes. Consequently, there are reversible transformation pathways for transitions between the titanates and the titanium dioxide polymorphs, via wet-chemical reactions at moderate temperatures. The significance of these findings arises because such transitions can be engineered to produce numerous delicate nanostructures under moderate conditions. To demonstrate the commercial application potential of these processes, we also report titanate and TiO(2) nanostructures synthesized directly from rutile minerals and industrial-grade rutiles by a new scheme of hydrometallurgical reactions.  相似文献   

3.
Structural parameters and electronic band gaps of dense TiO(2) polymorphs, i.e., alpha-PbO(2), baddeleyite, fluorite, and cotunnite types of structures, were calculated using a first-principles density functional method with local-density approximation. The ambient phases, i.e., rutile and anatase, with known theoretical and experimental data were used to ensure the validity of the calculations. The fluorite-type TiO(2) turned out to have the narrowest band gap, 1.08 or 2.18 eV after applying a very approximate band gap correction, due to highly symmetrical TiO(8) polyhedra with Ti(3d) and O(2p) orbitals in the most mixed state. Ti with eight coordinated oxygens, as feasible under high pressure or residual stress, may have potential applications as a visible-light-responsive photocatalyst.  相似文献   

4.
The electronic structure, lattice dynamics, and mechanical properties of AlH(3) phases have been studied by density functional calculations. The chemical bonding in different polymorphs of AlH(3) are evaluated on the basis of electronic structures, charge density analysis, and atomic charges, as well as bond overlap population analysis and the Born effective charges. The phonon dispersion relations and phonon density of states of all the polymorphs of AlH(3) are calculated by direct force-constant method. Application of pressure induces seqauence of phase transitions in β-AlH(3) which are understood from the phonon dispersive curves of the involved phases. The previously predicted phases (Chem. Mater. 2008, 20, 5997) are found to be dynamically stable. The calculated single crystal elastic constants reveal that all the studied AlH(3) polymorphs are easily compressible. The chemical bonding of these polymorphs have noticeable covalent character (except the hp2 phase) according to the present chemical bonding analyses. For all these polymorphs, the NMR-related parameters, such as isotropic chemical shielding, quadrupolar coupling constant, and quadrupolar asymmetry, are also calculated. All IR- and Raman-active phonon frequencies, as well as the corresponding intensities, are calculated for all the AlH(3) polymorphs and are compared with available experimental results.  相似文献   

5.
利用第一性原理平面波赝势密度泛函理论方法对TiO2从金红石结构到萤石结构的相变进行了理论研究,并且通过准谐德拜模型分别得到了金红石和萤石结构TiO2的热力学性质.计算结果与实验值以及其它理论计算的结果都符合得很好,通过吉布斯能的计算得到TiO2从金红石结构到萤石结构的相变压强为47.74GPa,并成功地获得了相对体积(V/V0)、德拜温度(Θ)和热容(CV)随压强(p)和温度(T)的变化关系.  相似文献   

6.
Visible-light irradiation (λ > 450 nm) of gold nanoparticles loaded on a mixture of anatase/rutile TiO(2) particles (Degussa, P25) promotes efficient aerobic oxidation at room temperature. The photocatalytic activity critically depends on the catalyst architecture: Au particles with <5 nm diameter located at the interface of anatase/rutile TiO(2) particles behave as the active sites for reaction. This photocatalysis is promoted via plasmon activation of the Au particles by visible light followed by consecutive electron transfer in the Au/rutile/anatase contact site. The activated Au particles transfer their conduction electrons to rutile and then to adjacent anatase TiO(2). This catalyzes the oxidation of substrates by the positively charged Au particles along with reduction of O(2) by the conduction band electrons on the surface of anatase TiO(2). This plasmonic photocatalysis is successfully promoted by sunlight exposure and enables efficient and selective aerobic oxidation of alcohols at ambient temperature.  相似文献   

7.
Simple polishing and relatively low temperature annealing procedures for preparing atomically flat terraced surfaces of various single-crystal TiO2 polymorphs are described. Anatase (101), anatase (001), rutile (100), rutile (110), and brookite (111) surfaces could all be prepared with a terraced surface structure as revealed in AFM images. The rutile (100) and (110) and anatase (101) surfaces were also shown to produce acceptable LEED patterns immediately upon insertion into a UHV system without the usual sputter and anneal cycles.  相似文献   

8.
9.
Nanocrystalline TiO(2) catalysts with different anatase/rutile ratios and high surface area (113-169 m(2)/g) have been prepared at low temperature by the microemulsion-mediated hydrothermal method. The samples were characterized by x-ray diffraction (XRD), Fourier transform (FT)-IR spectra, UV-vis diffuse reflectance spectra, and nitrogen adsorption-desorption methods. The contents of anatase and rutile phases in the TiO(2) powders have been successfully controlled by simply changing the proportion of Cl(-) and SO(4)(2-) in the aqueous phase of the microemulsion. A proposed mechanism involving bidentately chelated sulfate is discussed to explain the variation of the crystalline phase in the TiO(2) powder. The photodegradation of methyl orange (MO) in water has been investigated over titanium dioxide consisting of different anatase/rutile ratios. The catalyst containing 74.2% anatase showed the highest photocatalytic activity, which is due to a synergistic effect between anatase and rutile. The synergism was also found for the photodegradation of MO with physically mixed anatase and rutile as catalysts.  相似文献   

10.
Nonaqueous reactions between titanium(IV) chloride and alcohols (benzyl alcohol or n-butanol) were used for the synthesis of anatase TiO2 particles, while rutile TiO2 particles were synthesized in aqueous media by acidic hydrolysis of titanium(IV) chloride. The X-ray diffraction measurements proved the exclusive presence of either the anatase or the rutile phase in prepared samples. The photoluminescence of both kinds of particles (anatase and rutile) with several well-resolved peaks extending in the visible spectral region was observed, and the quantum yield at room temperature was found to be 0.25%. Photon energy up-conversion from colloidal anatase and rutile TiO2 particles was observed at low excitation intensities. The energy of up-converted photoluminescence spans the range of emission of normal photoluminescence. The explanation of photon energy up-conversion involves mid-gap energy levels originating from oxygen vacancies.  相似文献   

11.
Germanium dioxide (GeO2) takes two forms at ambient pressure: a thermodynamically stable rutile‐type structure and a high‐temperature quartz‐type polymorph. Here, we investigate the phase stability at finite temperatures by ab initio phonon and thermochemical computations. We use gradient‐corrected density‐functional theory (PBE‐GGA) and pay particular attention to the modeling of the “semicore” germanium 3d orbitals (ascribing them either to the core or to the valence region). The phase transition is predicted correctly in both cases, and computed heat capacities and entropies are in excellent agreement with thermochemical database values. Nonetheless, the computed formation energies of α‐quartz‐type GeO2 (and, consequently, the predicted transition temperatures) differ significantly depending on theoretical method. Remarkably, the simpler and cheaper computational approach produces seemingly better results, not worse. In our opinion, GeO2 is a nice test case that illustrates both possibilities and limitations of modern ab initio thermochemistry. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
TiO2纳米晶光催化降解铬酸根离子的研究   总被引:19,自引:0,他引:19  
以二氧化钛为光催化剂,研究了溶液的pH值、铬酸根离子的初始浓度、通入的气体种类、氧化钛的载量等因素对铬酸根离子降解率的影响。同时合成了粒径小于10nm的锐钛矿相和金红石相氧化钛纳米晶来考察晶相和尺寸效应对降解率的影响。结果表明,锐钛矿的催化活性高于金红石相,两者的催化活性均大大高于市售的氧化钛微粉。  相似文献   

13.
马艺  王秀丽  李灿 《催化学报》2015,(9):1519-1527
二十世纪八十年代以来,特别是近十年,光催化研究在利用可再生能源太阳能的道路上飞速发展。越来越多的研究表明,相结结构的构筑是有效提高半导体光催化剂性能的重要策略。其中, TiO2作为重要的模型光催化剂,其相关研究成果呈现出指数增长的趋势。本综述围绕TiO2模型光催化剂,主要介绍TiO2表面相结的研究成果,包括TiO2表面相的表征、锐钛矿:金红石TiO2相结用于光催化产氢研究、TiO2相结在光催化中作用的最新认识等。在表征方面,通过表面灵敏的紫外拉曼光谱研究了TiO2相变过程中表面相结构的变化,结合可见拉曼以及XRD表征揭示了TiO2独特的相变过程,即相变始于锐钛矿粒子的界面处,小粒子逐渐团聚为大粒子,致其相变从大粒子体相开始最终扩展到整个粒子。使用CO, CO2探针红外光谱,根据锐钛矿和金红石表面吸附物种的差异,进一步证实了锐钛矿:金红石表面相结结构,为紫外拉曼光谱的表面表征特性提供坚实证据。同时,利用发光光谱观察到锐钛矿晶相的可见发光带和金红石晶相的近红外发光带,并基于此给出了TiO2材料表面相结结构的荧光表征新方法。此外荧光光谱还提供了锐钛矿、金红石相中载流子动力学信息,揭示了束缚态在光催化中的作用。在光催化应用方面,观察到混相结构TiO2较单独锐钛矿及金红石相具有更高的光催化产氢活性,通过在较大金红石颗粒上担载纳米锐钛矿粒子,证明了相结结构在提高光催化活性中的核心作用,并首次提出了锐钛矿:金红石表面异相结结构概念,推断其对电荷分离的促进作用是最终提高反应活性的原因。之后将此概念应用到改善商品TiO2(P25)光催化活性中,通过可控热处理精细调控P25的表面相结构,在光催化重整生物质衍生物产氢实验中,成功将P25光催化产氢活性提高3?5倍。之后发展了新的TiO2表面控制方法,通过加入Na2SO4等相变控制剂,延缓了TiO2从锐钛矿向金红石的相变过程,在较高温度下实现TiO2相结结构的调控,最终可将P25光催化重整甲醇制氢的活性提高6倍,同时通过高分辨电镜清晰观察到锐钛矿:金红石相结的原子层生长接触。在相结作用机理方面,多种时间分辨光谱技术以及理论计算被用作探索锐钛矿:金红石相结处的电子转移机理。通过时间分辨红外光谱对TiO2表面相结结构作用的研究,特别是利用锐钛矿、金红石不同的瞬态吸收光谱特征,证明了锐钛矿:金红石相结处的载流子转移过程,存在锐钛矿向金红石的电子转移过程。模型光催化剂TiO2相结的研究成果,加深了对光催化机理的认识,促进新型高效光催化体系的设计合成。  相似文献   

14.
A water-dichloromethane interface-assisted hydrothermal method was employed to grow rutile TiO(2) nanowires (NWs) on electrospun anatase TiO(2) nanofibers (NFs), using highly reactive TiCl(4) as precursor. The water-dichloromethane interface inhibited the formation of rutile NWs in water phase, but promoted the selective radial growth of densely packed rutile NWs on anatase NFs to form a branched heterojunction. The density and length of rutile NWs could be readily controlled by varying reaction parameters. A formation mechanism for the branched heterojunction was proposed which involved (1) the entrapment of rutile precursor nanoparticles at water-dichloromethane interface, (2) the growth of rutile NWs on anatase NFs via Ostwald ripening through the scavengering of interface-entrapped rutile nanoparticles. The heterojunction formed at anatase NF and rutile NW enhanced the charge separation of both under ultraviolet excitation, as evidenced by photoluminescence and surface photovoltage spectra. The branched TiO(2) heterostructures showed higher photocatalytic activity in degradation of rodamine B dye solution than anatase NFs, and the mixture of anatase NFs, and P25 powders, which was discussed in terms of the synergistic effect of enhanced charge separation by anatase-rutile heterojunction, high activity of rutile NWs, and increased specific area of branched heterostructures.  相似文献   

15.
The effect of the rutile content on the photovoltaic performance of dye-sensitized solar cells (DSSCs) composed of mixed-phase TiO(2) photoelectrode has been investigated. The mixed-phase TiO(2) particles with varied amounts of rutile, relative to anatase phase, are synthesized by an in situ method where the concentration of sulfate ion is used as a phase-controlling parameter in the formation of TiO(2) using TiCl(4) hydrolysis. The surface area (S(BET)) varies from 33 (pure rutile) to 165 (pure anatase) m(2) g(-1). Generally, both the current density (J(sc)) and photo-conversion efficiency (η) decrease as the rutile content increases. The incorporation of rod-shaped rutile particles causes low uptake of dye due to the reduced surface area, as well as slow electron transport in less efficiently-stacked structure. However, maximum J(sc) (14.63 mA cm(-2)) and η (8.69%) appear when relatively low rutile content (16%) is employed. The reported synergistic effect by the efficient interparticle electron transport from rutile to anatase seems to overbalance the decrease of surface area when small amount of rutile particles is incorporated.  相似文献   

16.
以空心玻璃微球为载体,采用浸涂法制备TiO2/beads光催化剂;利用X射线衍射、扫描电镜、热分析对TiO2/beads进行了表征。研究了不同制备条件对TiO2/beads光催化活性的影响。结果表明,热处理600℃,5h,A/R为81/19时,TiO2/beads光催化活性最高;样品由非晶向锐钛矿型转变的温度为429℃,当锐钛矿型TiO2与金红石型TiO2以一定的比例共存时,TiO2/beads的光催化活性较好.  相似文献   

17.
Rutile TiO(2) nanoneedles (8 nm × 100 nm) synthesized at room temperature by anodization in perchloric acid (pH < 1) are shown to undergo an interesting reverse phase transformation to anatase nanoparticles (8 nm) at 300 °C only if the chlorate ions are maintained in the ambient medium. When chlorate ions are removed by multiple washing, the rutile phase and the needle morphology are maintained. The mechanism of formation of the ion-stabilized solid and its thermal evolution is discussed.  相似文献   

18.
An in situ electron paramagnetic resonance (EPR) study has been carried out for anatase (Hombikat UV100) and rutile TiO(2) nanoparticles at liquid helium (He) temperature (4.2 K) under UV irradiation. Rutile titania was synthesized by ultrasonic irradiation with titanium tetrachloride (TiCl(4)) as the precursor. XRD and Raman results evidence the crystallinity of titania phases. The nature of trapped electrons and holes has been investigated by EPR spectroscopy under air and vacuum conditions. Illumination of TiO(2) powder (anatase and rutile) at 4.2 K resulted in the detection of electrons being trapped at Ti(4+) sites within the bulk and holes trapped at lattice oxide ions at the surface. The stability of electron traps was very sensitive to temperature in both phases of TiO(2). The annealing kinetics of the EPR detected radicals has been studied from 4.2 K to ambient temperature and also for calcined titania particles from 523 to 1273 K.  相似文献   

19.
The stabilities and electronic structures of several polymorphs of tantalum oxynitride, TaON, were studied quantum‐chemically at density‐functional level. Results obtained by complementary quantum‐chemical techniques with wave‐functions either expanded in atom‐centered functions or in plane waves were compared. Close agreement was obtained for the relative stabilities of the baddeleyite, anatase, rutile, and fluorite phases of TaON. The effect of anion distribution on the structural parameters and the lattice energies of the anatase and rutile polymorphs was investigated. The calculated band structure of the polymorphs is compared with available experimental information.  相似文献   

20.
Phase transformation of TiO2 from anatase to rutile is studied by UV Raman spectroscopy excited by 325 and 244 nm lasers, visible Raman spectroscopy excited by 532 nm laser, X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV Raman spectroscopy is found to be more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase is detected by UV Raman spectroscopy for the sample calcined at higher temperatures than when it is detected by visible Raman spectroscopy and XRD. The inconsistency in the results from the above three techniques suggests that the anatase phase of TiO2 at the surface region can remain at relatively higher calcination temperatures than that in the bulk during the phase transformation. The TEM results show that small particles agglomerate into big particles when the TiO2 sample is calcined at elevated temperatures and the agglomeration of the TiO2 particles is along with the phase transformation from anatase to rutile. It is suggested that the rutile phase starts to form at the interfaces between the anatase particles in the agglomerated TiO2 particles; namely, the anatase phase in the inner region of the agglomerated TiO2 particles turns out to change into the rutile phase more easily than that in the outer surface region of the agglomerated TiO2 particles. When the anatase particles of TiO2 are covered with highly dispersed La2O3, the phase transformation in both the bulk and surface regions is significantly retarded, owing to avoiding direct contact of the anatase particles and occupying the surface defect sites of the anatase particles by La2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号