首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

2.
Eight oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(H(2)O)(dpt)](2)(mu-Cu(H(2)O)(opba)))(ClO(4))2 (1), ([Ni(H(2)O)(dien)](2)(mu-Cu(pba)))(ClO(4))(2).6H(2)O (2), ([Ni(H(2)O)(Medpt)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (3), ([Ni(H(2)O)(dien)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2.5H(2)O (4), ([Ni(H(2)O)(dpt)](2)(mu-Cu(Me(2)pba)))(ClO(4))(2).2H(2)O (5), ([Ni(H(2)O)(dien)](2)(mu-Cu(OHpba)))(ClO(4))(2).4H(2)O (6), ([Ni(2)(dpt)(2)(mu-Cu(H(2)O)(pba))](2)(mu-N(3))(2))Na(2)(ClO(4))(4).6H(2)O (7), and ([Cu(H(2)O)(2)(dpt)Ni(2)(H(2)O)(dpt)(2)](mu-H(2)Me(2)pba(2-)))(ClO(4))(4).3H(2)O (8) in which opba = o-phenylenbis(oxamato), pba = 1,3-propylenebis(oxamato), OHpba = 2-hydroxy-1,3-propylenebis(oxamato), Me(2)pba = 2,2-dimethyl-1,3-propylenbis(oxamato), dpt = 3,3'-diaminodipropylamine, dien = 2,2'-diaminodiethylamine, and Medpt = 3,3'-diamino-N-methyldipropylamine were synthesized and characterized. The crystal structures of 1, 7, and 8 were solved. For complex 1, the trinuclear entities are linked by hydrogen bonds forming a one-dimensional system, and for complex 8, the presence of van der Waals interactions gives a one-dimensional system, too. For complex 7, the trinuclear entities are self-assembled by azido ligands, given a hexanuclear system; each of these hexanuclear entities are self-assembled through two [Na(O)(3)(H(2)O)(3)] octahedral-sharing one-edge entities, given a one-dimensional system. The magnetic behavior of complexes 2-7 was investigated by variable-temperature magnetic susceptibility measurements. Complexes 2-6 exhibit the minimum characteristic of this kind of polymetallic species with an irregular spin state structure. The Jvalue through the oxamato bridge varied between -88 cm(-1) (for 6) and -111.2 cm(-1) (for 5). For complex 7, the values obtained were J(1) = -101.7 cm(-1) (through the oxamato ligand) and J(2) = -3.2 cm(-1) (through the azido ligand).  相似文献   

3.
The bis-pyridine tridentate ligands (6-R-2-pyridylmethyl)-(2-pyridylmethyl) benzylamine (RDPMA, where R = CH(3), CF(3)), (6-R-2-pyridylmethyl)-(2-pyridylethyl) benzylamine (RPMPEA, where R = CH(3), CF(3)), and the bidentate ligand di-benzyl-(6-methyl-2-pyridylmethyl)amine (BiBzMePMA) have been synthesized and their copper(I) complexes oxidized in a methanol solution to afford self-assembled bis-micro-methoxo-binuclear copper(II) complexes (1, 2, 4, 6) or hydroxo- binuclear copper(II) complexes (3). Oxidation of the nonsubstituted DPMA (R = H) in dichloromethane gives a chloride-bridged complex (5). The crystal structures for [Cu(MeDPMA)(MeO)](2)(ClO(4))(2) (1), [Cu(RPMPEA)(MeO)](2)(ClO(4))(2) (for 2, R= Me, and for 4, R = CF(3)), [Cu(BiBzMePMA)(MeO)](2)(ClO(4))(2) (6), [Cu(FDPMA)(OH)](2)(ClO(4))(2) (3), and [Cu(DPMA)(Cl)](2)(ClO(4))(2) (5) have been determined, and their variable-temperature magnetic susceptibility has been measured in the temperature range of 10-300 K. The copper coordination geometries are best described as square pyramidal, except for 6, which is square planar, because of the lack of one pyridine ring in the bidentate ligand. In 1-4 and 6, the basal plane is formed by two pyridine N atoms and two O atoms from the bridging methoxo or hydroxo groups, whereas in 5, the bridging Cl atoms occupy axial-equatorial sites. Magnetic susceptibility measurements show that the Cu atoms are strongly coupled antiferromagnetically in the bis-methoxo complexes 1, 2, 4, and 6, with -2J > 600 cm(-)(1), whereas for the hydroxo complex 3, -2J = 195 cm(-)(1) and the chloride-bridged complex 5 shows a weak ferromagnetic coupling, with 2J = 21 cm(-)(1) (2J is an indicator of the magnetic interaction between the Cu centers).  相似文献   

4.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

5.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

6.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

7.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

8.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

9.
Reaction of 1,2-bis[1,4,7-triazacyclonon-1-yl]propan-2-ol hexabromide (T(2)PrOH.6HBr) with Ni(ClO(4))(2)[middle dot]6H(2)O and adjustment of the pH to 7 resulted in the crystallization of pink and blue products from the one reaction mixture. The analytical data and X-ray structure determinations establish compositions corresponding to [Ni(T(2)PrOH)]Br(ClO(4))xH(2)O (pink crystals) and [Ni(2)(T(2)PrO)(OH(2))(3)Br]Br(ClO(4))x2H(2)O (blue crystals). A repeat synthesis of the latter yielded the diperchlorate monohydrate [Ni(2)(T(2)PrO)(OH(2))(3)Br](ClO(4))(2)xH(2)O. In the mononuclear complex, the 2-propanol group connecting the two 1,4,7-trizacyclononane (tacn) rings is protonated, the six nitrogen donors from the T(2)PrOH ligand coordinating to a single Ni(II) centre in a distorted octahedral geometry. In the binuclear complexes and, three coordination sites on each distorted octahedral Ni(II) centre are occupied fac by three nitrogen donors from the one tacn ring, the two metal centres being linked by an endogenous alkoxo bridge. A notable common feature of the two identical cations is that for one Ni(II) centre the remaining two sites are occupied by two water ligands, while in the other a bromo ligand replaces one ligated water. Similar binuclear systems have been recently defined [Zn(2)(T(2)PrO)X(H(2)O)(2)](ClO(4))(2)(X = Cl, Br), two complexes that exhibit coordination asymmetry with one pseudo-octahedral and one pseudo-square pyramidal Zn(ii) centre. The weak antiferromagnetic coupling in and is discussed and compared to di-phenoxo-bridged Ni(II) examples.  相似文献   

10.
Li HY  Jiang L  Xiang H  Makal TA  Zhou HC  Lu TB 《Inorganic chemistry》2011,50(8):3177-3179
The reactions of a pair of enantiomers of macrocyclic nickel(II) complexes with racemic penicillamine generated two 3D hydrogen-bonded homochiral frameworks of {[Ni(f-(SS)-L)](2)(l-pends)(ClO(4))(2)}(n) (Λ-1) and {[Ni(f-(RR)-L)](2)(d-pends) (ClO(4))(2)}(n) (Δ-1). The frameworks possess 1D tubular pores and opposite right/left-handed helical porous surfaces (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; pends(2-) = penicillaminedisulfide anion).  相似文献   

11.
Tridentate/tetradentate Schiff base ligands L(1) and L(2), derived from the condensation of o-vanillin or pyridine-2-aldehyde with N,N-dimethylethylenediammine, react with nickel acetate or perchlorate salt and azide, cyanate, or thiocyanate to give rise to a series of dinuclear complexes of formulas [Ni(L(1))(micro(1,1)-N(3))Ni(L(1))(N(3))(OH(2))].H(2)O (1), [[Ni(L(1))(micro(1,1)-NCS)Ni(L(1))(NCS)(OH(2))][Ni(L(1))(micro-CH(3)COO)Ni(L(1))( NCS) (OH(2))]] (2) [[2A][2B]], [Ni(L(1))(micro(1,1)-NCO)Ni(L(1))(NCO)(OH(2))].H(2)O (3), and [Ni(L(2)-OMe)(micro(1,1)-N(3))(N(3))](2) (4), where L(1) = Me(2)N(CH(2))(2)NCHC(6)H(3)(O(-))(OCH(3)) and L(2) = Me(2)N(CH(2))(2)NCHC(6)H(3)N. We have characterized these complexes by analytical, spectroscopic, and variable-temperature magnetic susceptibility measurements. The coordination geometry around all of the Ni(II) centers is a distorted octahedron with bridging azide, thiocyanate/acetate, or cyanate in a micro(1,1) mode and micro(2)-phenolate oxygen ion for 1-3, respectively, or with a double-bridging azide for 4. The magnetic properties of the complexes were studied by magnetic susceptibility (chi(M)) versus temperature measurements. The chi(M) nus T plot reveals that compounds 1 and 4 are strongly ferromagnetically coupled, 3 shows a weak ferromagnetic behavior, and 2 is very weakly antiferromagnetically coupled.  相似文献   

12.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

13.
Zheng XD  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(23):10858-10865
The reactions of racemic and enantiopure macrocyclic compounds [Ni(alpha-rac-L)](ClO(4))(2) (containing equal amounts of SS and RR enantiomers), [Ni(alpha-SS-L)](ClO(4))(2), and [Ni(alpha-RR-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile/water afford three 1D helical chains of {[Ni(f-rac-L)][Ag(CN)(2)](2)}(n) (1), {[Ni(f-SS-L)](2)[Ag(CN)(2)](4)}(n) (Delta-2), and {[Ni(f-RR-L)](2)[Ag(CN)(2)](4)}(n) (Lambda-2); one dimer of [Ni(f-rac-L)][Ag(CN)(2)](2) (3); and one trimer of [Ni(f-rac-L)Ag(CN)(2)](3).(ClO(4))(3) (4) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Compounds 1, Delta-2, Lambda-2, and 3, which are supramolecular isomers, are constructed via argentophilic interactions. In 1, [Ni(f-RR-L)][Ag(CN)(2)](2) enantiomers alternately connect with [Ni(f-SS-L)][Ag(CN)(2)](2) enantiomers through intermolecular argentophilic interactions to form a 1D meso-helical chain, and the 1D chains are further connected through the interchain hydrogen bonds to generate a 2D network. When chiral [Ni(alpha-SS-L)](ClO(4))(2) and [Ni(alpha-RR-L)](ClO(4))(2) were used as building blocks, two supramolecular stereoisomers of Delta-2 and Lambda-2 were obtained, which show the motif of homochiral right-handed and left-handed helical chains, respectively, and the 1D homochiral helical chains are linked by the interchain hydrogen bonds to form a 3D structure. In 3, a pair of enantiomers of [Ni(f-RR-L)][Ag(CN)(2)](2) and [Ni(f-SS-L)][Ag(CN)(2)](2) connect with each other through intermolecular argentophilic interactions to form a dimer. The reaction of [Ni(alpha-rac-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile gives a trimer of 4; each trimer is chiral with unsymmetrical RR, RR, and SS, or RR, SS, and SS configurations. The homochiral nature of Delta-2 and Lambda-2 was confirmed by the results of solid circular dichroism spectra measurements. The solid samples of 1-4 show strong fluorescent emissions at room temperature.  相似文献   

14.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

15.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

16.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

17.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

18.
Jiang L  Meng XR  Xiang H  Ju P  Zhong DC  Lu TB 《Inorganic chemistry》2012,51(3):1874-1880
Three coordination polymers of [(NiL(1))(3)(TCBA)(2)] (1), [(NiL(2))(3)(TCBA)(2)] (2), and [(NiL(3))(3)(TCBA)(2)] (3) have been constructed using azamacrocyclic Ni(II) complexes [NiL(1)](ClO(4))(2)/[NiL(2)](ClO(4))(2)/[NiL(3)](ClO(4))(2) and TCBA(3-) as building blocks (L(1) = 3,10-bis(2-fluorobenzyl)-1,3,5,8,10,12-hexaazacyclotetradecane; L(2) = 3,10-bis(3-fluorobenzyl)-1,3,5,8,10,12-hexaazacyclotetradecane; L(3) = 3,10-bis(4-fluorobenzyl)-1,3,5,8,10,12- hexaazacyclotetradecane; TCBA(3-) = tri(4-carboxy-benzyl)amine). The results of X-ray diffraction analyses reveal that 1 shows a 2D Borromean structure, while 2 and 3 form 2D layer structures, and the 2D layers are further connected by the interlayer F···F interactions in 2 and C-H···F interactions in 3 to generate two 3D porous structures with 1D fluorine atoms interspersed channels. Gas sorption measurements illustrate that the desolvated 2 and 3can adsorb N(2), H(2), and CO(2) molecules. The different structures and gas sorption properties of 1 and 2/3 are mainly induced by the different positions of F atoms in azamacrocycle ligands.  相似文献   

19.
The protonation of [Ni(SC(6)H(4)R-4)(triphos)](+) (triphos = PhP[CH(2)CH(2)PPh(2)](2); R = NO(2), Cl, H, Me, or MeO) by [lutH](+) (lut = 2,6-dimethylpyridine) to form [Ni(S(H)C(6)H(4)R-4)(triphos)](2+) is an equilibrium reaction in MeCN. Kinetic studies, using stopped-flow spectrophotometry, reveal that the reactions occur by a two-step mechanism. Initially, [lutH](+) rapidly binds to the complex (K(2)(R)) in an interaction which probably involves hydrogen-bonding of the acid to the sulfur. Subsequent intramolecular proton transfer from [lutH](+) to sulfur (k(3)(R)) is slow because of both electronic and steric factors. The X-ray crystal structures of [Ni(SC(6)H(4)R-4)(triphos)](+) (R = NO(2), H, Me, or MeO) show that all are best described as square-planar complexes, with the phenyl substituents of the triphos ligand presenting an appreciable barrier to the approach of the sterically demanding [lutH](+) to the sulfur. The kinetic characteristics of the intramolecular proton transfer from [lutH](+) to sulfur have been investigated. The rate of intramolecular proton transfer exhibits a nonlinear dependence on Hammett sigma(+), with both electron-releasing and electron-withdrawing 4-R-substituents on the coordinated thiolate facilitating the rate of proton transfer (NO(2) > Cl > H > Me < MeO). The rate constants for intramolecular proton transfer correlate well with the calculated electron density of the sulfur. The temperature dependence of the rate of the intramolecular proton transfer reactions shows that deltaH() is small but increases as the 4-R-substituent becomes more electron-withdrawing [deltaH = 4.1 (MeO), 6.9 (Me), 11.4 kcal mol(-)(1) (NO(2))], while DeltaS() becomes progressively less negative [deltaS = -50.1 (MeO), -41.2 (Me), -16.4 (NO(2)) cal K(-)(1) mol(-)(1)]. Studies with [lutD](+) show that the rate of intramolecular proton transfer varies with the 4-R-substituent [(k(3)(NO)2)(H)/(k(3)(NO)2)(D) = 0.39; (k(3)(Cl))(H)/(k(3)(Cl))(D) = 0.88; (k(3)(Me))(H)/(k(3)(Me))(D) = 1.3; (k(3)(MeO))(H)/(k(3)(MeO))(D) = 1.2].  相似文献   

20.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号