首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In an attempt to generate nicotinic acetylcholine receptor (nAChR) ligands selective for the alpha4beta2 and alpha7 subtype receptors we designed and synthesized constrained versions of anabasine, a naturally occurring nAChR ligand. 2-(Pyridin-3-yl)-1-azabicyclo[2.2.2]octane, 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane, and several of their derivatives have been synthesized in both an enantioselective and a racemic manner utilizing the same basic synthetic approach. For the racemic synthesis, alkylation of N-(diphenylmethylene)-1-(pyridin-3-yl)methanamine with the appropriate bromoalkyltetrahydropyran gave intermediates which were readily elaborated into 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane and 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via a ring opening/aminocyclization sequence. An alternate synthesis of 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via the alkylation of N-(1-(pyridin-3-ylethylidene)propan-2-amine has also been achieved. The enantioselective syntheses followed the same general scheme, but utilized imines derived from (+)- and (-)-2-hydroxy-3-pinanone. Chiral HPLC shows that the desired compounds were synthesized in >99.5% ee. X-ray crystallography was subsequently used to unambiguously characterize these stereochemically pure nAChR ligands. All compounds synthesized exhibited high affinity for the alpha4beta2 nAChR subtype ( K i < or = 0.5-15 nM), a subset bound with high affinity for the alpha7 receptor subtype ( K i < or = 110 nM), selectivity over the alpha3beta4 (ganglion) receptor subtype was seen within the 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane series and for the muscle (alpha1betagammadelta) subtype in the 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane series.  相似文献   

2.
Pandey G  Tiwari KN  Puranik VG 《Organic letters》2008,10(16):3611-3614
Using enantiopure 7-azabicyclo[2.2.1]heptane-2-ol, the synthesis of cis- as well as trans-2-aminocyclohexanols, dihydroconduramine E-1, and ent-conduramine F-1 has been described.  相似文献   

3.
We successfully synthesized the potent and selective group II mGluR agonist (+)-1 (MGS0008) via a process incorporating the key step of efficient fluorination of epoxide (+/-)-5c. This method would be adaptable to large-scale synthesis to produce (+)-1 in multi-gram quantities.  相似文献   

4.
The asymmetric cyclopropanation of vinylphosphonate using (S)-dimethylsulfonium-(p-tolylsulfinyl)methylide was applied to obtain a dideuterated cyclopropyl sulfoxide. A three-step synthesis of enantiopure (+)-(1R)-1-amino-2,2-dideuteriocyclopropanephosphonic acid (+)-17-d2 was developed.  相似文献   

5.
In search for potent and selective beta3-adrenergic receptor (beta3-AR) agonists as potential drugs for the treatment of type II diabetes and obesity, a novel series of 1-(3-chlorophenyl)-2-aminoethanol derivatives were prepared and evaluated for their biological activity at human beta1-, beta2-, and beta3-ARs and rat beta3-AR expressed in Chinese hamster ovary (CHO) cells. Replacement of the right-hand side (RHS, benzene ring) in the 'first generation' beta3-AR agonists BRL 37344 and CL 316243 with a 1H-indole ring gave compound 31 with unique pharmacological properties among beta3-AR agonists. Initial in vitro assays showed that 31 possesses modest rat and human beta3-ARs agonistic activity. Introduction of various substituent into the indole nucleus of 31 afforded a number of compounds with good beta3-ARs agonistic activity. In particular, 90 having a carboxylic acid functionality at the 7-position of the indole nucleus showed the most potent human beta3-AR agonistic activity. Finally, optical resolution of 90 led to the identification of the most promising compound, [3-[(2R)-[[(2R)-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1H-indol-7-yloxy]acetic acid (96, AJ-9677). This compound exhibited potent human beta3-AR agonistic activity (EC50=0.062 nM, IA=116%) with 210- and 103-fold selectivity over human beta2-AR and beta1-AR, respectively. Compound 96 also exhibited potent rat beta3-AR agonistic activity (EC50=0.016 nM, IA=110%). Moreover, repeated oral administration of 96 inhibited body weight gain and significantly decreased glucose, insulin, free fatty acid, and triglyceride concentrations in plasma in KK-Ay/Ta mice. On the basis of this pharmacological profile, 96 entered clinical development as a drug for the treatment of type II diabetes and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号