首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments are carried out in order to investigate the flow structure past a rectangular, triangular and semi-circular cavity of length-to-depth ratio of 2:1 using the Particle Image Velocimetry (PIV) technique. The experiments are performed in a large scale water channel with three different upstream velocities resulting in Reynolds numbers of 1230, 1460 and 1700, based on inflow momentum thickness, for each cavity type. Contours of constant averaged streamwise and transverse components of velocity, contours of constant averaged vorticity, Reynolds stress and streamline plots for each cavity type for the aforementioned three Reynolds numbers are presented. In addition, streamwise velocity, Reynolds stress and turbulence intensity values are compared for all cavity types. Effect of cavity shape on flow structure within the cavity is discussed in detail. Moreover, spectrum of instantaneous streamwise velocity fluctuations in shear layer near the downstream of the leading corner and the upstream of the trailing corner of the cavities are obtained and it was found that no organized oscillations are present in the flow; rectangular and triangular cavities have the largest amplitudes while semi-circular cavity has the smallest. Calculated turbulence intensities also reveal that the maximum turbulence intensities occur at cavity lid in the centerline section and rectangular and triangular cavities have larger turbulence intensity compared to semi-circular cavity.  相似文献   

2.
The purpose of this investigation is to study the effect of the orifice geometry on liquid breakup. In order to develop a better understanding of the liquid jet breakup, investigations were carried out in two steps—study of low-pressure liquid jet breakup and high-pressure fuel atomization. This paper presents the experimental investigations conducted to study the flow behavior of low-pressure water jets emanating from orifices with non-circular geometries, including rectangular, square, and triangular shapes and draws a comparison with the flow behavior of circular jets. The orifices had approximately same cross-sectional areas and were machined by electro-discharge machining process in stainless steel discs. The liquid jets were discharged in the vertical direction in atmospheric air at room temperature and pressure conditions. The analysis was carried out for gage pressures varying from 0 to 1,000 psi (absolute pressures from 0.10 to 6.99 MPa). The flow behavior was analyzed using high-speed visualization techniques. To draw a comparison between flow behavior from circular and non-circular orifices, jet breakup length and width were measured. The flow characteristics were analyzed from different directions, including looking at the flow from the straight edges of the orifices as well as their sharp corners. The non-circular geometric jets demonstrated enhanced instability as compared to the circular jets. This has been attributed to the axis-switching phenomenon exhibited by them. As a result, the non-circular jets yielded shorter breakup lengths as compared to the circular jets. In order to demonstrate the presence of axis-switching phenomenon in square and triangular jets, the jet widths were plotted along the axial direction. This technique clearly demonstrated the axis switching occurring in square and triangular jets, which was not clearly visible unlike the case of rectangular jets. To conclude, non-circular geometry induces greater instabilities in the liquid jets, thereby leading to faster disintegration. Thus, non-circular orifice geometries can provide a cheaper solution of improving liquid breakup and thus may enhance fuel atomization as compared to the precise manufacturing techniques of drilling smaller orifices or using costly elevated fuel injection pressure systems.  相似文献   

3.
Turbulent free jets issuing from five different nozzle geometries; smooth pipe, contracted circular, rectangular, triangular, and square, are experimentally investigated by using TSI 2-D laser Doppler velocimetry (LDV) to assess the effect of nozzle geometry and quarl (i.e. a cylindrical sudden expansion) on jet entrainment and spreading. The centerline mean velocity decay and the jet half-velocity width, which are indicators of jet entrainment and spreading rates, are determined for each nozzle’s flow configuration, i.e. with and without sudden expansion. Furthermore, turbulence quantities, such as the flow mean velocities and their mean fluctuating components, as well as Reynolds shear stresses, are all measured along the centerline plane of the jet to facilitate understanding the extent of the effect of nozzle’s geometry (i.e. nozzle’s orifice shape and sudden expansion) on jet’s entrainment and spreading. The main results show that the jet flow with the presence of sudden expansion exhibits higher rates of entrainment and spreading than without. In addition, these results reveal that sudden expansion exercises a greater effect on the asymmetric jet characteristics, especially for the triangular and rectangular nozzles compared to their axisymmetric counterparts (i.e. circular contracted nozzle).  相似文献   

4.
Flow of Bingham plastics through straight, long tubes is studied by means of a versatile analytical method that allows extending the study to a large range of tube geometries. The equation of motion is solved for general non-circular cross-sections obtained via a continuous and one-to-one mapping called the shape factor method. In particular the velocity field and associated plug and stagnant zones in tubes with equilateral triangular and square cross-section are explored. Shear stress normal to equal velocity lines, energy dissipation distribution and rate of flow are determined. Shear-thinning and shear-thickening effects on the flow, which cannot be accounted for with the Bingham model, are investigated using the Hershey-Bulkley constitutive formulation an extension of the Bingham model. The existence and the extent of undeformed regions in the flow field in a tube with equilateral triangular cross-section are predicted in the presence of shear-thinning and shear-thickening as a specific example. The mathematical flexibility of the analytical method allows the formulation of general results related to viscoplastic fluid flow with implications related to the design and optimization of physical systems for viscoplastic material transport and processing.  相似文献   

5.
As one of the key devices in the high temperature gas turbine system, cross-corrugated recuperators provide high heat transfer capabilities with compact size, light weight, strong mechanical strength and are mandatory to achieve 30 % electrical efficiency or higher for micro turbine engines. Flow in such geometries is usually laminar with lower Reynolds numbers. In order to understand mechanisms of flowing and heat transfer, periodic fully developed fluid flow and heat transfer in two types of cross-corrugated structures with inclination angle at 90° are investigated numerically and experimentally. Periodicity was used to reduce the complexity of the channel geometry and enables the smallest possible segment of the flow channel to be modeled. The velocity and temperature distributions were obtained in the three-dimensional complex domain. Besides a detailed flow analysis, comparison of the local heat and mass transfer and the pressure losses for these geometries are presented. It is shown that the flow phenomena caused by the different geometries were of significant influence on the homogeneity and on the quantity of the local heat and mass transfer as well as on the pressure drop. As a recuperator for micro turbine engines, cross-corrugated sinusoidal channels are more preferable to triangular channels.  相似文献   

6.
Shock-wave propagation through different arrays of solid obstacles and its attenuation are analyzed by means of numerical simulations. The two-dimensional compressible Navier–Stokes equations are solved using a fifth-order weighted essentially non-oscillatory scheme, in conjunction with an immersed-boundary method to treat the embedded solids within a cartesian grid. The present study focuses on the geometrical aspects of the solid obstacles, particularly at lower effective flow area, where the frictional forces are expected to be important. The main objective is to analyze the controlling mechanism for shock propagation and attenuation in complex inhomogeneous and porous medium. Different parameters are investigated such as the geometry of the obstacles, their orientation in space as well as the relaxation lengths between two consecutive columns. The study highlights a number of interesting phenomena such as compressible vortices and shock–vortex interactions that are produced in the post-shock region. This also includes shock interactions, hydrodynamic instabilities and non-linear growth of the mixing. Ultimately, the Kelvin–Helmholtz instability invokes transition to a turbulent mixing region across the matrix columns and eddies of different length scales are generated in the wake region downstream of the solid blocks. The power spectrum of instantaneous dynamic pressure shows the existence of a wide range of frequencies which scales nearly with f ?5/3. In terms of shock attenuation, the results indicate that the staggered matrix of reversed triangular prism (where the base of the triangular prism is facing the incoming shock) is the most efficient arrangement. In this case, both static and dynamic pressure impulses show significant reduction compared to the other studied configurations, which confirms the effectiveness of this type of barrier configuration. Furthermore, the use of combination of reverse–reverse arrangement of triangular prism obstacle maze is found more effective compared to the forward–reverse or forward–forward arrangements.  相似文献   

7.
The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, “L” (varying between 1 and 6.5 cm, L = 0.01–0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.  相似文献   

8.
The flow around square and diamond prisms and a circular cylinder impulsively set into motion was studied experimentally using the particle image velocimetry (PIV) technique. The experiments were conducted in water in an X-Y towing tank for Reynolds numbers from Re=200-1000. The temporal development of the near-wake recirculation zone, and its pair of primary eddies, was examined from the initial start until the wake became asymmetric, at a dimensionless elapsed time of t?=4 or 5. For both bodies, the length of the recirculation zone, the streamwise location of the primary eddies, and the strength of the primary eddies increased with time following the impulsive start, while the cross-stream spacing of the eddy centres remained nearly constant. The recirculation zones of the square and diamond prisms were longer than that of the impulsively started circular cylinder. For t?>2, the primary eddy strength, maximum vorticity, and cross-stream spacing of the primary eddies, were the same for both the square prism and circular cylinder. The diamond prism had the strongest primary eddies and highest maximum values of vorticity. A comparison of recirculation zone length data for impulsively started bluff bodies of six different cross-sections illustrated the effects of afterbody and forebody shape, with the normal flat plate (no afterbody and no forebody) having the longest recirculation zone and the circular cylinder (rounded afterbody and rounded forebody) having the shortest recirculation zone.  相似文献   

9.
The peristaltic flow of a Jeffrey fluid in an asymmetric channel is studied under long wavelength and low Reynolds number assumptions. The fluid is electrically conducting by a transverse magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The expressions for stream function, axial velocity and axial pressure gradient have been obtained. The effects of various emerging parameters on the flow characteristics are shown and discussed with the help of graphs. The pumping characteristics, axial pressure gradient and trapping phenomenon have been studied. Comparison of various wave forms (namely sinusoidal, triangular, square and trapezoidal) on the flow is discussed.  相似文献   

10.
On the basis of the available experimental and calculated data, approximate relations for determining the base pressure behind the rear face of a two-dimensional body in Mach 0 to 4 flow are derived, the relative thickness of the turbulent boundary layer on the body ranging from 0 to . Using these relations, the optimum afterbody contours giving a two-dimensional body maximum thrust are determined. The rear face heights of these contours are determined for arbitrary afterbody lengths and boundary layer thicknesses at M = 1–4.  相似文献   

11.
Eccentric annular pipe flows represent an ideal model for investigating inhomogeneous turbulent shear flows, where conditions of turbulence production and transport vary significantly within the cross-section. Moreover recent works have proven that in geometries characterized by the presence of a narrow gap, large-scale coherent structures are present. The eccentric annular channel represents, in the opinion of the present authors, the prototype of these geometries. The aim of the present work is to verify the capability of a numerical methodology to fully reproduce the main features of the flow field in this geometry, to verify and characterize the presence of large-scale coherent structures, to examine their behavior at different Reynolds numbers and eccentricities and to analyze the anisotropy associated to these structures. The numerical approach is based upon LES, boundary fitted coordinates and a fractional step algorithm. A dynamic Sub Grid Scale (SGS) model suited for this numerical environment has been implemented and tested. An additional interest of this work is therefore in the approach employed itself, considering it as a step into the development of an effective LES methodology for flows in complex channel geometries. Agreement with previous experimental and DNS results has been found good overall for the streamwise velocity, shear stress and the rms of the velocity components. The instantaneous flow field presented large-scale coherent structures in the streamwise direction at low Reynolds numbers, while these are absent or less dominant at higher Reynolds and low eccentricity. After Reynolds averaging is performed over a long integration time the existence of secondary flows in the cross session is proven. Their shape is found to be constant over the Reynolds range surveyed, and dependent on the geometric parameters. The effect of secondary flows on anisotropy is studied over an extensive Reynolds range through invariant analysis. Additional insight on the mechanics of turbulence in this geometry is obtained.  相似文献   

12.
The aim of this research is to evaluate the convective heat transfer coefficient of liquid cooled short pin fins by means of the infrared thermography. An experimental apparatus was set-up to analyze single, in-line and staggered array configurations of short pin fins. In this work the attention is focused on single pins having different shapes: circular, square, triangular and rhomboidal. The infrared thermography is used to indirectly measure the lateral pin temperature by observing the upper surface temperature of radially heated pins; these are placed in a test section chamber equipped with a Zinc Selenide infrared window. Flow visualizations by means of ink tracers are also carried out to relate the thermal behavior with the flow field. Regressions by the Zukauskas correlation were performed for each shape and new coefficients were carried out; a comparison among the different pin geometries underlines a better thermal exchange for the triangular and rhomboidal pins.  相似文献   

13.
The effect of orifice shape on the mechanism of bubble formation in gas–liquid two-phase flow is investigated experimentally with three different orifice geometries regarding a circle, a square, and a triangle with same cross-sectional areas. The liquid and gas phases are purified water at 20 °C and air at room temperature, respectively. Gas is injected at the rate of 50–1200 mlph into a stagnant pool of liquid in distances of 5, 10, and 15 cm below the liquid surface. The position, velocity, and acceleration of bubbles are measured at bubbles’ centers of mass (CM) and the effects of these parameters on the bubble volume are investigated. Moreover, the forces acting on a bubble are balanced and the effects of geometry and gas flow rate on each force are presented. In addition, the changes of the acting forces versus time are plotted and discussed for a specific condition. Results show the bubbles formed with the square and circular orifice cross-sectional areas have the most and least volumes at detachment, respectively.  相似文献   

14.
本文设计了一种适用于低流速水流中的悬臂梁式压电能量收集器,利用明渠流弯道水槽对五种质量相同、截面形状不同质量块的压电能量收集器进行实验研究,通过改变水的流速,得到不同质量块能量收集器收集功率和频率随流速的变化规律并进行分析。结果表明:在实验流速范围内,各质量块均存在起振流速,当低于起振流速时,收集的均方根功率(RMS Power)约为零,超过起振流速后,收集功率随流速增加而改变;形状相似的质量块,起振流速较为接近,四棱柱的起振流速最低,圆柱次之,三棱柱的最大;质量块截面形状不同,能量收集器性能不同,其中以三棱柱(70°)的输出性能最好,在流速为0.54 m/s时收集到的最大功率为2.02mW,分别是圆柱、四棱柱(50)和三棱柱(60°)的1.06、2.58、1.36倍。本文的研究可以为类似压电能量收集器的设计提供借鉴。  相似文献   

15.
Microcantilever based sensors have been widely employed for measuring or detecting various hazardous chemical agents and biological agents. Although they have been successful in detecting agents of interest, researchers desire to improve their performance by enhancing their mass sensitivity towards developing “detect to warn” detection capabilities. Moreover, there has been little work aimed at tailoring beam mechanics as a means to enhance mass sensitivity. In this paper, a numerical study is performed to assess the influence of microcantilever geometry on mass sensitivity in order to improve these devices for better detection of hazardous biological agents in liquid environments. Modal analysis was performed on microcantilevers of different geometries and shapes using ANSYS software and compared to the basic rectangular shaped microcantilever structures employed by most researchers. These structures all possessed a 50 μm length, 0.5 μm thickness and 25 μm width where the cantilever is clamped to the substrate, and were analyzed for their basic resonance frequency as well as the frequency shift for the attachment of a 0.285 pg of mass attached on their surfaces. These numerical results indicated that two parameters dominate their behavior, (1) the effective mass of the cantilever at the free end and (2) the clamping width at the fixed end. The ideal geometry was a triangular shape, which minimized effective mass and maximized clamping width, resulting in an order of magnitude increase in mass sensitivity (1,775 Hz/pg) over rectangular shaped cantilevers (172 Hz/pg) of identical length and clamping width. The most practical geometry was triangular shaped cantilever with a square pad at the free end for capturing the agent of interest. This geometry resulted in a mass sensitivity of 628 Hz/pg or nearly a 4-fold increase in performance over their rectangular counterparts.  相似文献   

16.
Introducing hierarchy into structures has been credited with improving elastic properties and damage tolerance. Specifically, adding hierarchical sub-structures to honeycombs, which themselves have good-density specific elastic and energy-absorbing properties, has been proposed in the literature. An investigation of the elastic properties and structural hierarchy in honeycombs was undertaken, exploring the effects of adding hierarchy into a range of honeycombs, with hexagonal, triangular or square geometry super and sub-structure cells, via simulation using finite elements. Key parameters describing these geometries included the relative lengths of the sub- and super-structures, the fraction of mass shared between the sub- and super-structures, the co-ordination number of the honeycomb cells, the form and extent of functional grading, and the Poisson’s ratio of the sub-structure. The introduction of a hierarchical sub-structure into a honeycomb, in most cases, has a deleterious effect upon the in-plane density specific elastic modulus, typically a reduction of 40 to 50% vs a conventional non-hierarchical version. More complex sub-structures, e.g. graded density, can recover values of density specific elastic modulus. With careful design of functionally graded unit cells it is possible to exceed, by up to 75%, the density specific modulus of conventional versions. A negative Poisson’s ratio sub-structure also engenders substantial increases to the density modulus versus conventional honeycombs.  相似文献   

17.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

18.
In relation to void fraction prediction of cross-flow in horizontal tube bundle of shell-tube heat exchangers, a drift-flux correlation has been developed to meet the demand on the study of two-phase flow gas and liquid velocities, two-phase pressure drop, heat transfer, flow patterns and flow induced vibrations in the shell side. Two critical parameters such as distribution parameter and drift velocity have been modeled. The distribution parameter is obtained by constant asymptotic values and taking into account the differences in channel geometry. The drift velocity is modelled depending on the density ratio and the non-dimensional viscosity number. The relationship between the channel averaged and gap mass velocity has been discussed in order to obtain the superficial gas and liquid velocities in the drift-flux correlation. The newly developed drift-flux correlation agrees well with cross-flow experimental databases of air-water, R-11 and R-113 in parallel triangular, normal square and normal triangular arrays with the mean absolute error of 1.06% and the standard deviation of 4.47%. In comparison with other existing correlations, the newly developed drift-flux correlation is superior to other studies due to the improved accuracy. In order to extend the applicability of the newly developed drift-flux correlation to void fraction of unity, an interpolation scheme has been developed. The newly developed drift-flux correlation is able to calculate the void fraction of cross-flow over a full range with different sub-channel configurations in shell-tube type heat exchangers.  相似文献   

19.
Numerical simulation of Poiseuille flow of liquid Argon in a rough nano-channel using the non-equilibrium molecular dynamics simulation is performed. Density and velocity profiles across the channel are investigated in which roughness is implemented only on the lower wall. The Lennard–Jones potential is used to model the interactions between all particles. The effects of surface roughness geometry, gap between roughness elements (or roughness periodicity), surface roughness height and surface attraction energy on the behavior of the flow undergoing Poiseuille flow are presented. Results show that surface shape and roughness height have a decisive role on the flow behaviors. In fact, by increasing the roughness ratio (height to base ratio), the slip velocity and the maximum velocity in the channel cross section are reduced, and the density fluctuations near the wall increases. Results also show that the maximum density near the wall for a rough surface is less than a smooth wall. Moreover, the simulation results show that the effect of triangle roughness surface on the flow behavior is more than the cylindrical ones.  相似文献   

20.
A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including “reverse hairpin vortex” and “reverse Karman S-H vortex rings”, allowing insight into physics of this complex flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号