首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solvent control on the ability of a partially substituted lower rim calix(4)arene derivative 5,11,17,23,tetra-tert-butyl[25,27-bis(hydroxy)-26,28-bis(ethylthioethoxy)]-calix(4)arene, 1 to host soft metal cations (Hg(II) and Ag(I)) is demonstrated through 1H NMR, electrochemical (conductance measurements), and thermodynamic characterization of the complexation process in a wide variety of solvents. Solvent-ligand interactions were assessed from 1H NMR measurements involving 1 and various solvents in CDCl3. Thus, the formation of a 1:1 1-CH3CN adduct is reported. As far as metal cations are concerned, depending on the medium their complexation with 1 was only observed for Hg(II) and Ag(I). Thus, in acetonitrile, 1 is more selective for Hg(II) relative to Ag(I) by a factor of 2.2 x 10(3). In methanol the selectivity is reversed to an extent that the affinity of 1 for Ag(I) is 1.4 x 10(3) higher than that for Hg(II). However, 1 is unable to recognize selectively these cations in N,N-dimethylformamide while in propylene carbonate the ability of 1 to interact with these cations is lost. An outstanding feature of thermodynamics emerges when an assessment is made of the ligand effect on the complexation of these cations and analogues calix(4)arene derivatives. Thus, in acetonitrile the thermodynamics of cation complexation by the hydrophilic cavity of a calix(4)arene containing mixed pendant groups is built up from thermodynamic data for the same process involving derivatives with common functionalities at the narrow rim. This is a unique example of the additive contribution of pendant arms in the field of thermodynamics of calixarene chemistry.  相似文献   

2.
The synthesis and characterization of several new phosphorus-containing partially lower rim substituted derivatives of 5,11,17,23-tetra(t-butyl) calix(4)arene (I) and 5,11,17,23-tetra(t-octyl)calix(4)arene (II), namely 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(diphenylphosphinoyl-oxy) calix(4)arene (IV); 5,11,17,23-tetra(t-butyl)-25-hydroxy-26,27,28-tris(tetramethyldiamido-phosphinoyl-oxy) calix(4)arene (Vb); 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VI); 5,11,17,23-tetra (t-octyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene (VII) are reported. The structure of the synthesized calix(4)arene derivatives are identified and confirmed by elemental analysis, IR, 1H, 13C, 31P{1H} NMR spectroscopy and mass spectrometry as and X-ray crystallographic analysis of 5,11,17,23-tetra(t-butyl)-25,27-dihydroxy-26,28-bis(dimethyl-phosphinoyl-methoxy) calix(4)arene VI. According to the NMR spectra, all calix(4)arenes are in cone conformation.  相似文献   

3.
The stability constants of alkali metal complexes obtained from the followingO-substituted calix[4]arenes were determined by UV/Vis spectroscopy inmethanol at 20°C: 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-1), 25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene (paco-1),5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-2) and25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(paco-2). All ligands form 1:1 complexes with alkali metal cations. The amide-containing calixarenes were found to be more efficient for alkali metalcomplexation than those bearing ester substituents. While sodium ions are selectivelycomplexed by the two mixed amide-(phosphine oxide) calixarenes, the twoester-containing isomers cone-2 and paco-2 turned out to be selective towards potassium and rubidium ions, respectively. With allfour ligands the lowest stability constants were found for the lithium andcesium ions.  相似文献   

4.
The complexation ability of a partially substituted lower rim calix[4]arene hydroxyamide derivative, 25,27-bis[N-(2-hydroxy-1,1-bishydroxymethylethyl)amino- carbonylmethoxy]calix[4]arene-26,28-diol, 1, for cations and anions was investigated through (1)H NMR, conductometry, spectrophotometry, and calorimetry in dipolar aprotic media. (1)H NMR studies of 1 in the deuterated solvents (acetonitrile, methanol, and dimethylsulfoxide) reflect ligand-solvent interactions in methanol and dimethylsulfoxide. As far as the cations are concerned, a selectivity peak is found when standard Gibbs energies of complexation of 1 with cations (alkaline-earth, zinc, and lead) are plotted against corresponding data for cation hydration. This finding reflects the key role played by the desolvation and binding processes in the overall complexation of this receptor and these cations in acetonitrile. This is also interpreted in terms of enthalpy and entropy data. Factors such as, the nature and the arrangement of donor atoms in the hydrophilic cavity of the ligand on cation complexation process, are discussed. This paper also addresses anion complexation processes. It is found that 1 interacts through hydrogen bond formation with fluoride, dihydrogen phosphate, and pyrophosphate in acetonitrile and N,N-dimethylformamide. The thermodynamics associated with these processes is fully discussed taking into account literature data involving calix[4]pyrroles and these anions in these solvents. Previous work regarding the water solubility of these ligands is discussed. It is concluded that 1 behaves as a ditopic ligand in dipolar aprotic media.  相似文献   

5.
The complexation spectroscopic behavior of three p-tert-butylcalix[4]arene Schiff bases i.e. 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(3-nitrobenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (1), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(2-hydroxybenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (2), and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[N-(2-hydroxy-3-methoxybenzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (3) with lanthanoid nitrates (Tb3+ and Eu3+) has been investigated in anhydrous acetonitrile at 25 degrees C by using UV-vis and FT-IR as well as fluorescence spectra. The results obtained indicated that the spectroscopic behavior of compounds 1-2 upon complexation with lanthanoid ions did not show any significant larger difference in comparison with free compounds 1 and 2, which may be contributed to the poor binding ability. Contrary to compounds 1 and 2, the lower rim functional groups in compound 3 can form two large pi electron conjugate system with lanthanide ion and encapsulate lanthanide ions tightly, displaying the novel spectroscopic behavior upon complexation with lanthanide ions. As compared with compound 3, the formation complexes of compound 3 with Tb3+ and Eu3+ showed new broad intense absorption at 398 nm, respectively, and IR spectra showed that O-H stretching vibration at 3413.40 cm(-1) displayed a large drop. It is interestingly noted that the narrow emission line spectra were observed only for 3 complex with Tb3+, but did not for 3-Eu3+ complex. In the 3-Eu3+ complex, the broad-band emission at lambda(max) = 534 nm was obtained at the excitation of 398 nm. The spectroscopic behavior of three calix[4]arene derivatives upon complexation with lanthanoids was discussed from the relationship between the host structure and the properties of guest lanthanide ions.  相似文献   

6.
Yu Liu 《Tetrahedron》2003,59(40):7967-7972
A series of novel double-armed calix[4]arene derivatives, i.e. 5,11,17,23-tetra-tert-butyl -25,27-bis[2-[(2-hydroxy-5-(4-nitroazo)benzylidene)amino]ethoxy]-26,28-dihydroxy-calix[4]-arene (4), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(2-nitroazo)benzylidene) amino]ethoxy]-26,28-dihydroxycalix[4]arene (5), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(4-chloroazo)benzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (6), have been synthesized as an selective chromoionophore for Na+. The complexation behavior of ligands 4-6 with alkali metal ions Na+, K+, Rb+and Cs+ has been evaluated by using UV-Vis spectrometry in CH3CN-H2O (99:1/V:V) solution at 25°C. The UV-Vis spectra show that the complexation of 4-6 with Na+exhibits obvious bathochromic shifts (λmax 379→480 nm) and there is a unique color change in the solution from yellow to red upon complexation. The binding constants for Na+ are higher than that of other alkali metal ions, giving the highest cation selectivity up to 7 for Na+/K+. The binding ability and photophysical behavior of alkali cations by calix[4]arene derivatives 4-6 are discussed from the point of view of substituted effects at the lower rim of parent calix[4]arene and size-fit concept between host calix[4]arenes and guest cations.  相似文献   

7.
The interaction of lower rim calix(4)arene derivatives containing ester (1) and ketone (2) functional groups and bivalent (alkaline-earth, transition- and heavy-metal) cations has been investigated in various solvents (methanol, N,N-dimethylformamide, acetonitrile, and benzonitrile). Thus, 1H NMR studies in CD3OD, C3D7NO, and CD3CN show that the interaction of these ligands with bivalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Hg2+, Pb2+, Cd2+) is only observed in CD3CN. These findings are corroborated by conductance measurements in these solvents including benzonitrile, where changes upon the addition of the appropriate ligand (1 or 2) to the metal-ion salt only occur in acetonitrile. Thus, in this solvent, plots of molar conductance against the ligand/metal cation ratio reveal the formation of 1:1 complexes between these ligands and bivalent cations. Four metal-ion complex salts resulting from the interaction of 1 and 2 with cadmium and lead, respectively, were isolated and characterized by X-ray crystallography. All four structures show an acetonitrile molecule sitting in the hydrophobic cavity of the ligand. The mode of interaction of the neutral guest in the cadmium(II) complexes differs from each other and from that found in the lead(II) complexes and provides evidence of the versatile behavior of acetonitrile in binding processes involving calix(4)arene derivatives. The thermodynamics of complexation of these ligands and bivalent cations in acetonitrile is reported. Thus, the selective behavior of 1 and 2 for bivalent cations is for the first time demonstrated. The role of acetonitrile in the complexation process in solution is discussed on the basis of 1H NMR and X-ray crystallographic studies. It is suggested that the complexation of 1 and 2 with bivalent cations is likely to involve the ligand-solvent adducts rather than the free ligand. Plots of complexation Gibbs energies against the corresponding data for cation hydration show a selectivity peak which is explained in terms of the predominant role played by cation desolvation and ligand binding energy in complex formation involving metal cations and macrocycles in solution. A similar peak is found in terms of enthalpy suggesting that for most cations (except Mg2+) the selectivity is enthalpically controlled. The ligand effect on the complexation process is quantitatively assessed. Final conclusions are given highlighting the role of the solvent in complexation processes involving calix(4)arene derivatives and metal cations.  相似文献   

8.
The transfer of alkali and alkaline earth metal ions and ammonium ions facilitated by the calixarenes 5,11,17,23-tetra(tert-butyl)-26,28-dihydroxycalix[4]-25,27-crown-5-ether, 5,11,17,23-tetra(tert-butyl)-26,28-di(ethoxycarbonylmethoxy)calix[4]-25,27-crown-5-ether, and 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetra(ethoxycarbonylmethoxy)-calix[4]arene was studied by voltammetry at the interface between two immiscible electrolyte solutions. The formal energies, transfer potentials, stoichiometry, and stability constants of the complexes were determined. The optimum conditions for determining the ammonium ion by voltammetry at the liquid-liquid interface were selected on the basis of these studies (the detection limit was 3.5 × 10?6 M). The ammonium ion determination showed selectivity relative to the sodium ion.  相似文献   

9.
Summary Two new kinds of calix[4]arene derivatives, 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(isopropylcarbamoyl-methoxy)-26,28-diundecenyloxy calix[4]arene (C[4]A) and 25,27-dibutoxy-5, 11, 17, 23-tetra-tert-butyl-26,28-diundecenyloxy calix[4]arene (C[4]B0, are prepared and then are polymized by two different processes. Three calix[4]arene polysiloxane stationary phases for capillary gas chromatography are obtained. Their chromatographic characteristics, including column efficiency, polarity, selectivity, glass-transition temperature and thermal stability are studied. Retention mechanisms are also discussed.  相似文献   

10.
Abstract

Calorimetric titrations have been performed for the first time in anhydrous acetonitrile at 25°C to give the complex stability constant (K S) and thermodynamic quantities for the complexation of light lanthanoid(III) nitrates (La-Gd) with 5,11,17,23-tetra-tert-butyl-26,28-bis(cyanomethoxy)-25,27-dihydroxy-calix[4]arene (1) and 5,11,17,23-tetra-tert-butyl-26, 28-bis(2-aminoethoxy)-25,27-dihydroxycalix[4]arene (2). X-ray crystallographic structures of 1 and 2 were also determined and compared. Possessing the cyanomethoxy and aminoethyl substituents, 1 and 2 displayed strikingly different cation binding abilities and selectivity profiles with much higher K S values for La3+ and Ce3+, which may be related to the original structures in the solid state. Thus, the binding profile for 2 showed a rapid decrease in K S with decreasing ionic diameter from La3+ to Pr3+ and then became flat up to Gd3+, while 1 gave a very flat profile which is superimposable with that for 2 between Pr3+-Gd3+. Thermodynamically, the complexation is driven absolutely by enthalpy which compensates the entropic loss arising from the structural freezing of the calix[4]arene derivatives upon simultaneous binding of lanthanoid ion by the phenolic oxygen and acetonitrile molecule in the cavity. The general validity and the meaning of the compensative enthalpy-entropy relationship observed are discussed.  相似文献   

11.
Complexation of alkali metal cations with 5,11,17,23-tetra-tert-butyl-26,28,25,27-tetrakis(O-methyl-d-α-phenylglycylcarbonylmethoxy)calix[4]arene (L) in methanol and acetonitrile was studied by means of direct and competitive microcalorimetric titrations at 25 °C. The thermodynamic parameters of complexation reactions showed that all the reactions investigated were enthalpically controlled. In both solvents the reaction enthalpy was most favorable for Na+ binding with L leading to the highest affinity of the examined calix[4]arene derivative towards this cation. The solubilities (and consequently the solution Gibbs energies) of the ligand were determined, as were the corresponding solution enthalpies and entropies. No significant difference was observed between the solution thermodynamic quantities of L in the two solvents, whereas the transfer of complex species from methanol to acetonitrile was found to be quite favorable. The interactions of solvent molecules with the free and the complexed ligand were investigated by 1H NMR spectroscopy. It was concluded that in both cases inclusion of an acetonitrile molecule into the hydrophobic cavity of L occurred, which significantly affected the cation complexation in this solvent. The thermodynamic data were discussed regarding the structural properties of the ligand, the free and the complexed cations as well as the solvation abilities of the solvents examined. In this respect, the specific solvent-solute interactions and the intramolecular NH⋅⋅⋅O=C hydrogen bonds at the lower rim of L were particularly addressed.  相似文献   

12.
A series of novel N-chromogenic calix[4]arene azacrown ethers were synthesized as selective extractants of potassium ion. 1,3-Alternate calix[4]arene azacrown ethers were prepared by reacting 25,27-dipropyloxy-26,28-bis(5-chloro-3-oxapentyloxy) calix[4]arenes with p-toluenesulfonamide in the presence of potassium carbonate. The coupling reaction of calix[4]arene azacrown ether with 2-hydroxy-5-nitrobenzyl bromide in the presence of triethylamine in THF gave the chromogenic calix[4]arene azacrown ether in moderate yield. These compounds show high potassium selectivity over other metal ions as shown by two-phase extraction, bulk liquid membrane, and 1H NMR studies on a ligand-metal complex. It is assumed that the OH of the chromogenic group attached on nitrogen can assist the complexation by encapsulation of the metal.  相似文献   

13.
王浩  张衡益  刘育 《中国化学》2005,23(6):740-744
Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb^3 . The absorption spectra of 3 with Tb^3 showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb^3 , and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.  相似文献   

14.
The synthesis of two new flavin substituted calix[4]arene derivatives, 9 and 10 , is described. The first flavin substituted calix[4]arene derivative 9 was synthesized by the reaction of 3‐methylalloxazine ( 5 ) with 25,27‐bis(3‐bromopropoxy)‐26,28‐dihydroxy‐5,11,17,23‐tetra(tert‐butyl)calix[4]arene ( 4 ) in high yield (92%). The other derivative 10 was prepared from 3‐methylalloxazine‐1‐acetic acid ( 7 ) and 25,27‐bis(3‐cyanopropoxy)calix[4]arene ( 3 ). All new compounds were characterized by a combination of FT‐IR and 1H‐NMR spectroscopy, and elemental‐analysis techniques.  相似文献   

15.
Determination of the crystal structure of the acetonitrile inclusate of the complex formed between sodium trifluoromethanesulfonate (triflate, CF3SO3-) and the narrow-rim functionalised calix[4]arene, 5,11,17,23-tetra-tert-butyl-25,27-di(phenylmethoxy)-26,28-di(2'-methoxyethoxy)calix[4]arene, has shown, somewhat unexpectedly, that the diether pendent arms do not chelate the sodium cation, although coordination of all four phenolic oxygen atoms does draw the calixarene into a nearly symmetrical cone form, consistent with conclusions drawn earlier from solution 1H NMR data. Crystals of C64H80O6.NaO3S.CF3.CH3CN obtained from acetonitrile solvent are monoclinic, C2/c, a structure determination at 'low' temperature (153 K) resolving several difficulties encountered in earlier attempts to analyse data acquired at approximately 295 K, and indicative of an interesting temperature dependence of substituent and anion orientations.  相似文献   

16.
A novel thiacalix[4]arene ditopic receptor with 1,3-alternate conformation and possessing two complexation sites for hard and soft cations, 5,11,17,23-tetra-tert-butyl-25,27-bis[(N,N-diethylaminocarbonyl)methoxy]-26,28-bis[(pyridylmethyl)oxy]-2,8,14,20-tetrathiacalix[4]arene is prepared. Regioselective synthesis of distal-bis[(N,N-diethylaminocarbonyl)methoxy]thiacalix[4]arene is accomplished by a protection-deprotection method using benzyl groups as a protecting group. The deprotection of benzyl group was succeeded in the presence of solid superacid (Nafion-H) under refluxing benzene. Its complexation behavior is examined by 1H-NMR titration experiments. The formation of 1:2 homo- and heteronuclear complexes demonstrates that the preorganization, subtle conformational changes and affinity have a pronounced effect on the complexation of the receptor.  相似文献   

17.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

18.
The extraction of sodium and potassium ions by 25,27-dicarboxymethyl-26,28-dimethoxy-5,11,17,23-tetra-tert-butyl calix[4]arene (L1H2) in chloroform shows the formation of MLIH and M2LI complexes (M = Na, K). In 1,2-dichloroethane, the MLIH species are formed in the acidic pH range, while only the Na2LI species is found at high pH values. The corresponding extraction equilibrium constants K11 (M) and K21 (M) have been evaluated and show a selectivity in favour of Na+ as compared to K+, whatever the nature of the complexes. In chloroform, this selectivity is much more pronounced considering the 2 : 1 complexes: K11(Na)/K11(K) K21(Na)/K21(K).The coexistence of 1 : 1 and 2 : 1 metal : ligand complexes is also shown in the extraction of sodium in 1,2-dichloroethane by the 25,27-dicarboxymethyl-26,28-dimethoxyethoxy-5,11,17,23-tetra-tertbutyl calix[4]arene (LIIH2), locked in the cone conformation.Structural data of the complexes are discussed on the basis of 1H-NMR spectra. In particular, for LIH2, a conformational change from cone to partial cone upon metal complexation has been evidenced for the complexes KLIH, K2LI and Na2LI.  相似文献   

19.
The synthesis and structure determinations of lanthanum, samarium, ytterbium, and lutetium complexes of 5,11,17,23-tetra-tert-butyl-25,27-bis((diethylcarbamoyl)methoxy)-26,28-dihydroxycalix[4]arene (L) are described. The four structures display similar characteristics with the trivalent lanthanide cation being encapsulated in an eight-coordinate oxygen environment, consisting of six oxygens from the calixarene, a water molecule, and unidentate picrate for lanthanum [La(L-2H)(picrate)(H(2)O)]; and bidentate chelating picrate for the other lanthanides [Ln(L-2H)(picrate)]Ln = Sm, Yb, Lu. Under optimised experimental conditions solvent extraction investigations showed the calix[4]arene ligand L exhibited generally very high percentage extractabilities of lanthanide cations into dichloromethane, presumably on account of the ligand's unique lower rim oxygen containing coordination sphere and its lipophilic exterior.  相似文献   

20.
郑炎松  肖勤 《中国化学》2005,23(10):1289-1291
Chiral nitrogen-containing calix[4]arene was easily synthesized by the reaction of 25,27-di(2-bromoethoxy)- 26,28-dihydroxy-5,11,17,23-tetrakis(t-butyl)calix[4]arene with S-(-)-1-phenylethylamine in excellent yield, and showed good ability to recognize the enantiomers of mandelic acid and 2,3-dibenzoyltartaric acid. This finding has potential application to assay and separation of enantiomers of the carboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号